2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于并行动态学习型免疫算法的永磁同步电机状态监测

刘朝华 李小花 张红强 周少武

刘朝华, 李小花, 张红强, 周少武. 基于并行动态学习型免疫算法的永磁同步电机状态监测. 自动化学报, 2015, 41(7): 1283-1294. doi: 10.16383/j.aas.2015.c140678
引用本文: 刘朝华, 李小花, 张红强, 周少武. 基于并行动态学习型免疫算法的永磁同步电机状态监测. 自动化学报, 2015, 41(7): 1283-1294. doi: 10.16383/j.aas.2015.c140678
LIU Zhao-Hua, LI Xiao-Hua, ZHANG Hong-Qiang, ZHOU Shao-Wu. Parallel Dynamic Learnable Immune Evolutionary Algorithm for Permanent Magnet Synchronous Machine Parameter Condition Monitoring. ACTA AUTOMATICA SINICA, 2015, 41(7): 1283-1294. doi: 10.16383/j.aas.2015.c140678
Citation: LIU Zhao-Hua, LI Xiao-Hua, ZHANG Hong-Qiang, ZHOU Shao-Wu. Parallel Dynamic Learnable Immune Evolutionary Algorithm for Permanent Magnet Synchronous Machine Parameter Condition Monitoring. ACTA AUTOMATICA SINICA, 2015, 41(7): 1283-1294. doi: 10.16383/j.aas.2015.c140678

基于并行动态学习型免疫算法的永磁同步电机状态监测

doi: 10.16383/j.aas.2015.c140678
基金项目: 

国家科技支撑计划(2012BAH09B02),国家自然科学基金(61174140, 51374107),中 国博士后科学基金(2013M540628, 2014T70767),湖南省自然科学基金(13JJ8014, 14JJ3107),湖南省教育厅科研优秀青年项目(15B087)资助

详细信息
    作者简介:

    李小花硕士, 湖南科技大学信息与电气工程学院讲师. 主要研究方向为复杂工业过程控制与优化, 网络安全.E-mail: teacherli163@163.com

Parallel Dynamic Learnable Immune Evolutionary Algorithm for Permanent Magnet Synchronous Machine Parameter Condition Monitoring

Funds: 

Supported by Key Projects in the National Science and Technology Pillar Program (2012BAH09B02), National Natural Science Foundation of China (61174140, 51374107), China Postdoctoral Science Foundation Funded Project (2013M540628, 2014T70767), Hunan Provincial Natural Science Foundation of China (13JJ8014, 14JJ3107), and Hunan Provincial Education Department outstanding youth project (15B087)

  • 摘要: 为提高永磁同步电机(Permanent magnet synchronous machine, PMSM)系统参数辨识与状态监测效率,利用图形处理器(Graphics processing unit, GPU)并行计算与 人工免疫技术相结合的研究方法,建立面向永磁同步电机系统基于GPU并行动态学习型 免疫进化的参数估计与状态监测模型.为提高算法的动态跟踪性能,在抗体演化进 程中,通过知识学习策略来引导算法进化过程,首先将抗体群划分为B细胞群、浆细胞 群以及记忆细胞群,对处于不同进化群体中的抗体分别设计免疫综合学习策略、免 疫反向学习策略和高斯学习策略,以增强抗体间的信息交互;接着,应用图形处 理器并行计算技术进一步加速算法求解过程;最后,将所提算法应用于永磁同 步电机系统参数辨识与状态监测中,实验表明,所提方法能同时准确地对电机的定子 电阻、dq轴电感和永磁磁链等系统关键参数进行估计.依据参数变化实现对系统 运行状态进行在线监测与预警.计算结果表明, GPU并行技术能大幅度提高计算效率.
  • [1] Liu K, Zhu Z Q. Position offset-based parameter estimation for permanent magnet synchronous machines under variable speed control. IEEE Transactions on Power Electronics, 2015, 30(6): 3438-3446
    [2] Daneshi-Far Z, Capolino G A, Henao H. Review of failures and condition monitoring in wind turbine generators. In: Proceedings of the 19th International Conference on Electrical Machines (ICEM). Rome, Italy: IEEE, 2010. 1-6
    [3] Khov M, Regnier J, Faucher J. Monitoring of turn short-circuit faults in stator of PMSM in closed loop by on-line parameter estimation. In: Proceedings of the 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives. Cargese, France: IEEE, 2009. 1-6
    [4] Bolognani S, Tubiana L, Zigliotto M. Extended Kalman filter tuning in sensorless PMSM drives. IEEE Transactions on Industry Applications, 2003, 39(6): 1741-1747
    [5] Rashed M, MacConnell P F A, Stronach A F, Acarnley P. Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1664-1675
    [6] Shamsi Nejad M A, Taghipour M. Inter-turn stator winding fault diagnosis and determination of fault percent in PMSM. In: Proceedings of the 2011 IEEE Applied Power Electronics Colloquium. Johor Bahru: IEEE, 2011. 128-131
    [7] Riba Ruiz J R, Rosero J A, Espinosa A G, Romeral L. Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions. IEEE Transactions on Magnetics, 2009, 45(7): 2961-2969
    [8] Liu K, Zhu Z Q, Stone D A. Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets. IEEE Transactions on Industrial Electronics, 2013, 60(12): 5902-5913
    [9] Liu Z H, Zhang J, Zhou S W, Li X H, Liu K. Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM. IEEE Transactions on Cybernetics, 2013, 43(6): 1921-1935
    [10] Liu Zhao-Hua, Zhou Shao-Wu, Liu Kan, Zhang Jing. Permanent magnet synchronous motor multiple parameter identification and temperature monitoring based on binary-modal adaptive wavelet particle swarm optimization. Acta Automatica Sinica, 2013, 39(12): 2121-2130(刘朝华, 周少武, 刘侃, 章兢. 基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法. 自动化学报, 2013, 39(12): 2121-2130)
    [11] Thumati B T, Halligan G R. A novel fault diagnostics and prediction scheme using a nonlinear observer with artificial immune system as an online approximator. IEEE Transactions on Control Systems Technology, 2013, 21(3): 569-578
    [12] Chitchian M, Simonetto A, van Amesfoort A S, Keviczky T. Distributed computation particle filters on GPU architectures for real-time control applications. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2224-2238
    [13] Ho N B, Tay J C, Lai E M K. An effective architecture for learning and evolving flexible job-shop schedules. European Journal of Operational Research, 2007, 179(2): 316-333
    [14] Ling S H, Iu H H C, Leung F H F, Chan K Y. Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging. IEEE Transactions on Industrial Electronics, 2008, 55(9): 3447-3460
    [15] Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79
    [16] Juang C F. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics ---Part B: Cybernetics, 2004, 34(2): 997-1006
    [17] Ling S H, Iu H H C, Chan K Y, Lam H K, Yeung B C W, Leung F H. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Transactions on Systems, Man, and Cybernetics ---Part B: Cybernetics, 2008, 38(3): 743-763
    [18] Liang J J, Qin A K, Suganthan P N, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295
    [19] Zhan Z H, Zhang J, Li Y, Chung H S H. Adaptive particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics ---Part B: Cybernetics, 2009, 39(6): 1362-1381
    [20] De Castro L N, Von Zuben F J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251
    [21] Liu Zhao-Hua, Zhang Jing, Zhang Ying-Jie, Wu Jian-Hui. Competitive-cooperative coevolutionary immune-dominant clone selection algorithm for solving the traveling salesman problem. Control Theory & Applications, 2011, 27(10): 1322-1330 (刘朝华, 章兢, 张英杰, 吴建辉. 竞争合作型协同进化免疫算法及其在旅行商问题中的应用. 控制理论与应用, 2011, 27(10): 1322-1330)
  • 加载中
计量
  • 文章访问数:  1453
  • HTML全文浏览量:  91
  • PDF下载量:  1228
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2015-01-19
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回