2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分区四元数姿态控制

张洪华 关轶峰 胡锦昌 王泽国

张洪华, 关轶峰, 胡锦昌, 王泽国. 分区四元数姿态控制. 自动化学报, 2015, 41(7): 1341-1349. doi: 10.16383/j.aas.2015.c140624
引用本文: 张洪华, 关轶峰, 胡锦昌, 王泽国. 分区四元数姿态控制. 自动化学报, 2015, 41(7): 1341-1349. doi: 10.16383/j.aas.2015.c140624
ZHANG Hong-Hua, GUAN Yi-Feng, HU Jin-Chang, WANG Ze-Guo. A Novel Attitude Control Strategy Based on Quaternion Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1341-1349. doi: 10.16383/j.aas.2015.c140624
Citation: ZHANG Hong-Hua, GUAN Yi-Feng, HU Jin-Chang, WANG Ze-Guo. A Novel Attitude Control Strategy Based on Quaternion Partition. ACTA AUTOMATICA SINICA, 2015, 41(7): 1341-1349. doi: 10.16383/j.aas.2015.c140624

分区四元数姿态控制

doi: 10.16383/j.aas.2015.c140624
基金项目: 

国家自然科学基金(61403031)资助

详细信息
    作者简介:

    张洪华北京控制工程研究所研究员. 1991 年获得北京航空航天大学博士学位. 主要研究方向为挠性航天器控制, 着陆器制导、导航与控制.E-mail: zhanghh502@163.com

A Novel Attitude Control Strategy Based on Quaternion Partition

Funds: 

Supported by National Natural Science Foundation of China (61403031)

  • 摘要: 提出了一种基于分区控制策略的四元数姿态控制律. 其基本思想是基于姿态四元数误差分区设计目标角速度, 由此将问题降阶为一个角速度跟踪问题; 基于不同的角速度跟踪误差, 设计了切换类型的抗干扰姿态控制律. 该控制策略可以使得姿态快速收敛, 并且在合适的参数选择条件之下还能同时满足控制力矩的饱和约束. 通过综合相平面和Lyapunov函数的分析方法严格证明了闭环系统全局收敛的性质. 最后, 通过数值仿真验证了本文提出的控制方案的有效性.
  • [1] Sanyal A, Fosbury A, Chaturvedi N, Bernstein D S. Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1167-1178
    [2] Boškoviċ J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22
    [3] Boškoviċ J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633
    [4] Kim K -S, Kim Y. Robust backstepping control for slew maneuver using nonlinear tracking function. IEEE Transactions on Control Systems Technology, 2003, 11(6): 822-829
    [5] Widnall W S. Lunar module digital autopilot. Journal of Spacecraft and Rockets, 1971, 8(1): 56-62
    [6] Calhoun P C, Queen E M. Entry vehicle control system design for the Mars science laboratory. Journal of Spacecraft and Rockets, 2006, 43(2): 324-329
    [7] Kubota T, Otsuki M, Hashimoto T, Bando N, Yano H, Uo M, Shirakawa K, Kawaguchi J. Touchdown dynamics for sampling in Hayabusa mission. In: Proceedings of the 2006 AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006.
    [8] Johnson M C. A parameterized approach to the design of lunar lander attitude controllers. In: Proceedings of the 2006 AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado. Keystone, Colorado: American Institute of Aeronautics and Astronautics, 2006.
    [9] Tu Shan-Cheng. Spacecraft Attitude Dynamics and Control. Beijing: Astronautics Press, 2002. (屠善澄. 卫星姿态动力学与控制. 北京: 宇航出版社, 2002.)
    [10] Zou Guang-Rui, Lv Zhen-Duo, Li Tie-Shou. The Design of Attitude and Orbit Control System for DFH 3. The 5th Control Technology Conference of Chinese Automation Society for Space and Locomotion Object, 1992. (邹广瑞, 吕振铎, 李铁寿. 东方红3号卫星姿态和轨道控制系统设计. 中国自动化学会全国第五次空间及运动物体控制技术学术会议论文集, 1992.)
    [11] Kapoor N, Teel A R, Daoutidis P. An anti-windup design for linear systems with input saturation. Automatica, 1998, 34(5): 559-574
    [12] Wen J T Y, Kreutz-Delgado K. The attitude control problem. IEEE Transactions on Automatic Control, 1991, 36(10): 1148-1162
    [13] Subbarao K. Nonlinear PID-like controllers for rigid-body attitude stabilization. Journal of the Astronautical Sciences, 2004, 52(1-2): 61-74
    [14] Zhan Yi, Zhang Hong-Hua. A globally stable attitude tracking law with integrals. Control Engineering, 2006, (1): 9-16, 24 (战毅, 张洪华. 全局稳定的含积分项的姿态跟踪控制律. 控制工程, 2006, (1): 9-16, 24)
    [15] Subbarao K, Akella M R. Differentiator-free nonlinear proportional-integral controllers for rigid-body attitude stabilization. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1092-1096
    [16] Su J Y, Cai K Y. Globally stabilizing proportional-integral-derivative control laws for rigid-body attitude tracking. Journal of Guidance, Control, and Dynamics, 2011, 34(4): 1260-1264
    [17] Schlanbusch R, Loria A, Nicklasson P J. On the stability and stabilization of quaternion equilibria of rigid bodies. Automatica, 2012, 48(12): 3135-3141
    [18] Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation. Control Engineering Practice, 2003, 11(9): 989-997
    [19] Wie B. Space Vehicle Dynamics and Control (Second Edition). Reston: American Institute of Aeronautics and Astronautics, Inc., 2008. 403-444
  • 加载中
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  123
  • PDF下载量:  1027
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-01
  • 修回日期:  2015-02-16
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回