2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

欠驱动RTAC系统的自适应耦合控制器设计

武宪青 何熊熊

武宪青, 何熊熊. 欠驱动RTAC系统的自适应耦合控制器设计. 自动化学报, 2015, 41(5): 1047-1052. doi: 10.16383/j.aas.2015.c140618
引用本文: 武宪青, 何熊熊. 欠驱动RTAC系统的自适应耦合控制器设计. 自动化学报, 2015, 41(5): 1047-1052. doi: 10.16383/j.aas.2015.c140618
WU Xian-Qing, HE Xiong-Xiong. Adaptive Coupling Controller Design for Underactuated RTAC Systems. ACTA AUTOMATICA SINICA, 2015, 41(5): 1047-1052. doi: 10.16383/j.aas.2015.c140618
Citation: WU Xian-Qing, HE Xiong-Xiong. Adaptive Coupling Controller Design for Underactuated RTAC Systems. ACTA AUTOMATICA SINICA, 2015, 41(5): 1047-1052. doi: 10.16383/j.aas.2015.c140618

欠驱动RTAC系统的自适应耦合控制器设计

doi: 10.16383/j.aas.2015.c140618
基金项目: 

国家科技支撑计划课题(2013BAF07B03), 国家自然科学基金(61473262), 浙江省信号处理重点实验室(2012E10016)资助

详细信息
    作者简介:

    武宪青 浙江工业大学信息工程学院博士研究生. 主要研究方向为桥式吊车, TORA/RTAC 等欠驱动系统控制.E-mail: wux.zjut@gmail.com

    通讯作者:

    何熊熊 浙江工业大学信息工程学院教授. 主要研究方向为欠驱动系统控制, 迭代学习控制. E-mail: hxx@zjut.edu.cn

Adaptive Coupling Controller Design for Underactuated RTAC Systems

Funds: 

Supported by National Science and Technology Pillar Program of China (2013BAF07B03), National Natural Science Foundation of China (61473262), and Zhejiang Key Laboratory for Signal Processing (2012E10016)

  • 摘要: 针对欠驱动(Rotational/translational actuator, RTAC)系统, 设计了一种基于能量分析的自适应控制器. 相比其他控制方法, 该控制策略可根据系统响应情况对平移振荡器质量等系统参数进行在线估计. 具体而言, 首先分析了RTAC系统的总能量; 随后, 在此基础上构造了一个新颖的Lyapunov函数, 从而得到了一种自适应耦合控制器, 采用投影算子作为更新律以确保估计参数在预设的界内并保证系统的收敛性; 最后, 采用Lyapunov方法及LaSalle不变性原理证明了闭环系统的稳定性. 通过数值仿真验证了所提控制器的有效性, 结果表明所提自适应控制器具有良好的控制性能.
  • [1] Wang Jia-Jun, Liu Dong-Liang, Wang Bao-Jun. Research on one type of saturated nonlinear stabilization control method of X-Z inverted pendulum. Acta Automatica Sinica, 2013, 39(1): 92-96(王家军, 刘栋良, 王宝军. X-Z倒立摆的一种饱和非线性稳定控制方法的研究. 自动化学报, 2013, 39(1): 92-96)
    [2] [2] Sun N, Fang Y C, Zhang X B. Energy coupling output feedback control of 4-DOF underactuated cranes with saturated inputs. Automatica, 2013, 49(5): 1318-1325
    [3] [3] Xin X, Yamasaki T. Energy-based swing-up control for a remotely driven Acrobot: theoretical and experimental results. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1048-1056
    [4] [4] Ailon A. Simple tracking controllers for autonomous VTOL aircraft with bounded inputs. IEEE Transactions on Automatic Control, 2010, 55(3): 737-743
    [5] Sun Ning, Fang Yong-Chun. A review for the control of a class of underactuated systems. CAAI Transactions on Intelligent Systems, 2011, 6(3): 200-207(孙宁, 方勇纯. 一类欠驱动系统的控制方法综述. 智能系统学报, 2011, 6(3): 200-207)
    [6] Sun Ning, Fang Yong-Chun, Wang Peng-Cheng, Zhang Xue-Bo. Adaptive trajectory tracking control of underactuated 3-dimensional overhead crane systems. Acta Automatica Sinica, 2010, 36(9): 1287-1294(孙宁, 方勇纯, 王鹏程, 张雪波. 欠驱动三维桥式吊车系统自适应跟踪控制器设计. 自动化学报, 2010, 36(9): 1287-1294)
    [7] Wang Wei, Yi Jian-Qiang, Zhao Dong-Bin, Liu Xiao-Jing. Cascade fuzzy sliding mode control for a class of uncertain underactuated systems. Control Theory Applications, 2006, 23(1): 53-59(王伟, 易建强, 赵冬斌, 柳晓菁. 一类非确定欠驱动系统的串级模糊滑模控制. 控制理论与应用, 2006, 23(1): 53-59)
    [8] [8] Wang W, Yi J, Zhao D, Liu D. Design of a stable sliding-mode controller for a class of second-order underactuated systems. IEE Proceedings Control Theory and Applications, 2004, 151(6): 683-690
    [9] [9] Wu X Q, He X X, Wang M S. A new anti-swing control law for overhead crane systems. In: Proceedings of the 9th IEEE Conference on Industrial Electronics and Applications. Hangzhou, China: IEEE, 2014. 678-683
    [10] Wu X Q, He X X, Sun N, Fang Y C. A novel anti-swing control method for 3-D overhead cranes. In: Proceedings of the 2014 American Control Conference (ACC). Portland, OR: IEEE, 2014. 2821-2826
    [11] Xu J X, Guo Z Q, Lee T H. Design and implementation of integral sliding-mode control on an underactuated two-wheeled mobile robot. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3671-3681
    [12] Jiang Z P, Kanellakopoulos I. Global output-feedback tracking for a benchmark nonlinear system. IEEE Transactions on Automatic Control, 2000, 45(5): 1023-1027
    [13] Celani F. Output regulation for the TORA benchmark via rotational position feedback. Automatica, 2011, 47(3): 584-590
    [14] Boker A M, Khalil H K. Nonlinear observers comprising high-gain observers and extended Kalman filters. Automatica, 2013, 49(12): 3583-3590
    [15] Xu Qing-Yuan, Yang Zhi, Fan Zheng-Ping, Li Xiao-Dong. A combination feedback system of nonlinear observer and energy-based control. Control Theory Applications, 2011, 28(1): 31-36(许清媛, 杨智, 范正平, 李晓东. 一种非线性观测器和能量结合的反馈控制系统. 控制理论与应用, 2011, 28(1): 31-36)
    [16] Wan C J, Bernstein D S, Coppola V T. Global stabilization of the oscillating eccentric rotor. Nonlinear Dynamics, 1996, 10(1): 49-62
    [17] Gao B T, Zhang X H, Chen H J, Zhao J G. Energy-based control design of an underactuated 2-dimensional TORA system. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO: IEEE, 2009. 1296-1301
    [18] Jankovic M, Fontaine D, Kokotovic P V. TORA example: cascade- and passivity-based control designs. IEEE Transactions on Control Systems Technology, 1996, 4(3): 292-297
    [19] Gao B T, Bao Y Q, Xie J H, Jia L J. Passivity-based control of two-dimensional translational oscillator with rotational actuator. Transactions of the Institute of Measurement and Control, 2014, 36(1): 111-118
    [20] Alleyne A. Physical insights on passivity-based TORA control designs. IEEE Transactions on Control Systems Technology, 1998, 6(3): 436-439
    [21] Bupp R T, Bernstein D S, Chellaboina V S, Haddad W M. Resetting virtual absorbers for vibration control. Journal of Vibration and Control, 2000, 6(1): 61-83
    [22] Avis J M, Nersesov S G, Nathan R. Decentralised energy-based hybrid control for the multi-RTAC system. International Journal of Control, 2010, 83(8): 1701-1709
    [23] Petres Z, Baranyi P, Korondi P, Hashimoto H. Trajectory tracking by TP model transformation: case study of a benchmark problem. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1654-1663
    [24] Avis J M, Nersesov S G, Nathan R, Ashrafiuon H, Muske K R. A comparison study of nonlinear control techniques for the RTAC system. Nonlinear Analysis: Real World Applications, 2010, 11(4): 2647-2658
    [25] Kolmanovsky I, McClamroch N H. Hybrid feedback stabilization of rotational-translational actuator (RTAC) system. International Journal of Robust and Nonlinear Control, 1998, 8(4-5): 367-375
    [26] Behal A, Setlur P, Dixon W, Dawson D M. Adaptive position and orientation regulation for the camera-in-hand problem. Journal of Robotic Systems, 2005, 22(9): 457-473
    [27] Pomet J B, Praly L. Adaptive nonlinear regulation: estimation from the Lyapunov equation. IEEE Transactions on Automatic Control, 1992, 37(6): 729-740
    [28] Khalil H K. Nonlinear Systems (3rd edition). Upper Saddle River, NJ: Prentice Hall, 2002.
  • 加载中
计量
  • 文章访问数:  1577
  • HTML全文浏览量:  108
  • PDF下载量:  859
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-25
  • 修回日期:  2015-01-24
  • 刊出日期:  2015-05-20

目录

    /

    返回文章
    返回