2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色彩空间自然场景统计的无参考图像质量评价

李俊峰

马伟伟, 贾新春, 张大伟. 双率采样系统的基于观测器的网络化H∞控制. 自动化学报, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046
引用本文: 李俊峰. 基于色彩空间自然场景统计的无参考图像质量评价. 自动化学报, 2015, 41(9): 1601-1615. doi: 10.16383/j.aas.2015.c140616
MA Wei-Wei, JIA Xin-Chun, ZHANG Da-Wei. Observer-based Networked H∞ Control for Dualrate Sampling Systems. ACTA AUTOMATICA SINICA, 2015, 41(10): 1788-1797. doi: 10.16383/j.aas.2015.c150046
Citation: LI Jun-Feng. No-reference Image Quality Assessment Based on Natural Scene Statistics in RGB Color Space. ACTA AUTOMATICA SINICA, 2015, 41(9): 1601-1615. doi: 10.16383/j.aas.2015.c140616

基于色彩空间自然场景统计的无参考图像质量评价

doi: 10.16383/j.aas.2015.c140616
基金项目: 

国家自然科学基金(61374022),浙江省新型网络标准及其应用技术重点实验室开放课题(2013E10012)资助

详细信息
    作者简介:

    李俊峰 浙江理工大学机械与自动控制学院副教授.2010年获得东华大学工学博士学位.主要研究方向为图像质量评价,图像融合.E-mail:ljf2003@zstu.edu.cn

No-reference Image Quality Assessment Based on Natural Scene Statistics in RGB Color Space

Funds: 

Supported by National Natural Science Foundation of China (61374022), Zhejiang Provincial Key Laboratory of New Network Standards and Technologies (2013E10012)

  • 摘要: RGB色彩空间中各色彩分量间存在强相关性, 图像发生失真会改变各分量间的相关性. 基于此, 本文提出了一种新的通用无参考图像质量评价方法. 首先, 根据人类视觉对RGB色彩空间中绿色分量更为敏感的颜色感知特性, 提取了G分量MSCN系数及其4方向邻域系数的统计特征; 其次, 在分析RGB色彩空间中R、G及B分量间相关性的基础上, 分别计算RGB色彩空间各色彩分量及其纹理、相位间的互信息, 利用互信息作为统计特征来描述其各分量间的相关性; 进而, 结合上述统计特征, 分别利用SVR和SVC构建无参考图像质量评价模型和图像失真类型识别模型; 最后, 在LIVE、CSIQ 及TID2008图像质量评价数据库上进行了算法与DMOS (Different mean opinion score)的相关性、失真类型识别及计算复杂性等方面的实验. 实验结果表明, 本文方法的评价结果与人类主观评价具有高度的一致性, 在LIVE 数据库上的斯皮尔曼等级相关系数和皮尔逊线性相关系数均在0.942以上; 而且, 图像失真类型识别模型的识别准确率也高达93.59%, 明显高于当今主流无参考图像质量评价方法.
  • [1] Brand ao T, Queluz M P. No-reference image quality assessment based on DCT domain statistics. Signal Processing, 2008, 88(4): 822-833
    [2] Golestaneh S A, Chandler D M. No-reference quality assessment of JPEG images via a quality relevance map. IEEE Signal Processing Letters, 2014, 21(2): 155-158
    [3] Sheikh H R, Bovik A C, Cormack L K. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927
    [4] Zhang J, Ong S H, Le T M. Kurtosis-based no-reference quality assessment of JPEG2000 images. Signal Processing: Image Communication, 2011, 26(1): 13-23
    [5] Cheng Xiao-Gang, An Ming-Wei, Ruan Ya-Duan, Chen Qi-Mei. A modern image quality measurement method for blind image restoration. Acta Automatica Sinica, 2013, 39(4): 418-423 (成孝刚, 安明伟, 阮雅端, 陈启美. 基于变分的盲图像复原质量评价指标. 自动化学报, 2013, 39(4): 418-423)
    [6] Lu Ya-Nan, Xie Feng-Ying, Zhou Shi-Xin, Jiang Zhi-Guo, Meng Ru-Song. Non-reference quality assessment of dermoscopy images with defocus blur and uneven illumination distortion. Acta Automatica Sinica, 2014, 40(3): 480-488 (卢亚楠, 谢凤英, 周世新, 姜志国, 孟如松. 皮肤镜图像散焦模糊与光照不均混叠时的无参考质量评价. 自动化学报, 2014, 40(3): 480-488)
    [7] Serir A, Beghdadi A, Kerouh F. No-reference blur image quality measure based on multiplicative multiresolution decomposition. Journal of Visual Communication and Image Representation, 2013, 24(7): 911-925
    [8] Oh T, Park J, Seshadrinathan K, Lee S, Bovik A C. No-reference sharpness assessment of camera-shaken images by analysis of spectral structure. IEEE Transactions on Image Processing, 2014, 23(12): 5428-5439
    [9] Ye P, Doermann D. No-reference image quality assessment using visual codebooks. IEEE Transactions on Image Processing, 2012, 21(7): 3129-3138
    [10] Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708
    [11] Dong Hong-Ping, Liu Li-Xiong. No-reference image quality assessment in mutual information domain. Journal of Image and Graphics, 2014, 19(3): 484-492 (董宏平, 刘利雄. 互信息域中的无参考图像质量评价. 中国图象图形学报, 2014, 19(3): 484-492)
    [12] Liu L X, Liu B, Huang H, Bovik A C. No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication, 2014, 29(8): 856-863
    [13] Xue W F, Mou X Q, Zhang L, Bovik A C, Feng X C. Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Transactions on Image Processing, 2014, 23(11): 4850-4862
    [14] Sang Q B, Wu X J, Li C F, Bovik A C. Blind image quality assessment using a reciprocal singular value curve. Signal Processing: Image Communication, 2014, 29(10): 1149-1157
    [15] Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352
    [16] Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364
    [17] Zhang Y, Moorthy A K, Chandler D M, Bovik A C. C-DIIVINE: No-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Signal Processing: Image Communication, 2014, 29(7): 725-747
    [18] Liu L X, Dong H P, Huang H, Bovik A C. No-reference image quality assessment in curvelet domain. Signal Processing: Image Communication, 2014, 29(4): 494-505
    [19] Li Y M, Po L M, Xu X Y, Feng L T. No-reference image quality assessment using statistical characterization in the shearlet domain. Signal Processing: Image Communication, 2014, 29(7): 748-759
    [20] Lu F F, Zhao Q F, Yang G K. A no-reference image quality assessment approach based on steerable pyramid decomposition using natural scene statistics. Neural Computing and Applications, 2015, 26(1): 77-90
    [21] Li Y M, Po L M, Xu X Y, Feng L T, Yuan F, Cheung C H, Cheung K W. No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing, 2015, 154: 94-109
    [22] Tsagarisv V, Anastassopoulos V. Multispectral image fusion for improved RGB representation based on perceptual attributes. International Journal of Remote Sensing, 2005, 26(15): 3241-3254
    [23] Ponomarenko N N, Lukin V V, Zelensky A, Egiazarian K, Carli M, Battisti F. TID2008---A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10: 30-45
    [24] Mittal A, Soundararajan R, Bovik A C. Making a 'Completely Blind' image quality analyzer. IEEE Signal Processing Letters, 2012, 20(3): 209-212
    [25] Ruderman D L. The statistics of natural images. Network: Computation in Neural Systems, 1994, 5(4): 517-548
    [26] Kovesi P. Phase congruency detects corners and edges. In: Proceedings of the 7th International Conference on Digital Image Computing: Techniques and Applications. Sydney, Australia, 2003. 309-318
    [27] Klotz J G, Kracht D, Bossert M, Schober S. Canalizing boolean functions maximize mutual information. IEEE Transactions on Information Theory, 2014, 60(4): 2139-2147
    [28] Chang C C, Lin C C. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No. 27
  • 期刊类型引用(22)

    1. 张欣,张雁,张鑫. 基于亮度与彩色纹理统计的无参考图像评价. 信息技术与信息化. 2023(01): 122-129 . 百度学术
    2. 何锦成,韩永成,张闻文,何伟基,陈钱. 基于通道校正卷积的真彩色微光图像增强. 兵工学报. 2023(06): 1643-1654 . 百度学术
    3. 罗小燕,刘顺,汤文聪,王兴卫. 基于Mask RCNN的矿仓入料口堵塞矿石识别定位研究. 有色金属科学与工程. 2022(01): 101-107 . 百度学术
    4. 陈健,李诗云,林丽,王猛,李佐勇. 模糊失真图像无参考质量评价综述. 自动化学报. 2022(03): 689-711 . 本站查看
    5. 段添耀,柯圆圆. 基于多种颜色模型的马赛克瓷砖选色研究. 江汉大学学报(自然科学版). 2022(04): 45-52 . 百度学术
    6. 来晓. 基于微调优化的深度学习在果蔬识别中的应用. 智能计算机与应用. 2021(04): 117-123 . 百度学术
    7. 贺杰,王桂梅,刘杰辉,杨立洁. 基于图像处理的皮带机上煤量体积计量. 计量学报. 2020(12): 1516-1520 . 百度学术
    8. 柴富杰,邓嘉敏,李建森,刘正发. 数码照相颜色数值与物质浓度辨识的数学模型. 数学的实践与认识. 2019(04): 305-311 . 百度学术
    9. 陈扬,李旦,张建秋. 互补色小波域图像质量盲评价方法. 电子学报. 2019(04): 775-783 . 百度学术
    10. 侯向宁,刘华春. 基于MSER和SVM以及强种子区域生长的车牌定位. 西安工程大学学报. 2019(02): 180-185 . 百度学术
    11. 梁长江,吴雪梅,王芳,宋朱军,张富贵. 基于无人机的田间地膜识别算法研究. 浙江农业学报. 2019(06): 1005-1011 . 百度学术
    12. 刘星星,王烁烁,徐丽明,袁全春,马帅,于畅畅,牛丛,陈晨,袁训腾,曾鉴. 基于OpenCV的动态葡萄干色泽实时识别. 农业工程学报. 2019(23): 177-184 . 百度学术
    13. 李可,陈洪亮,张生伟,万锦锦. 基于SVM的雾天图像分类技术研究. 电光与控制. 2018(03): 37-41+47 . 百度学术
    14. 丁丽. 基于粗集理论的车辆状态检测. 电脑知识与技术. 2018(01): 189-190+208 . 百度学术
    15. 胡晓丽,钟昊,李彤. 基于二值图像连通域的甘蔗螟虫识别计数方法. 桂林电子科技大学学报. 2018(03): 210-214 . 百度学术
    16. 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法. 山东大学学报(工学版). 2018(04): 10-19 . 百度学术
    17. 李玉华,李天华,牛子孺,吴彦强,张智龙,侯加林. 基于色饱和度三维几何特征的马铃薯芽眼识别. 农业工程学报. 2018(24): 158-164 . 百度学术
    18. 郑恩,林靖宇. 基于图像质量约束的无序图像关键帧提取. 计算机工程. 2017(11): 210-215 . 百度学术
    19. 任荣梓,高航. 基于混沌置乱的分量融合图像加密压缩方法. 计算机技术与发展. 2017(08): 106-109+114 . 百度学术
    20. 元朴康,况盛坤,王强,田全慧. 基于GRNN的模糊图像盲评价. 包装工程. 2016(13): 195-200 . 百度学术
    21. 李俊峰,张之祥,沈军民. 基于亮度统计的无参考图像质量评价. 光电子·激光. 2016(10): 1101-1110 . 百度学术
    22. 万泽慧. 试析网络图像的色彩管理要点. 无线互联科技. 2016(04): 32-34 . 百度学术

    其他类型引用(51)

  • 加载中
计量
  • 文章访问数:  1848
  • HTML全文浏览量:  115
  • PDF下载量:  1720
  • 被引次数: 73
出版历程
  • 收稿日期:  2014-09-02
  • 修回日期:  2015-04-28
  • 刊出日期:  2015-09-20

目录

    /

    返回文章
    返回