[1]
|
Brand ao T, Queluz M P. No-reference image quality assessment based on DCT domain statistics. Signal Processing, 2008, 88(4): 822-833
|
[2]
|
Golestaneh S A, Chandler D M. No-reference quality assessment of JPEG images via a quality relevance map. IEEE Signal Processing Letters, 2014, 21(2): 155-158
|
[3]
|
Sheikh H R, Bovik A C, Cormack L K. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 2005, 14(11): 1918-1927
|
[4]
|
Zhang J, Ong S H, Le T M. Kurtosis-based no-reference quality assessment of JPEG2000 images. Signal Processing: Image Communication, 2011, 26(1): 13-23
|
[5]
|
Cheng Xiao-Gang, An Ming-Wei, Ruan Ya-Duan, Chen Qi-Mei. A modern image quality measurement method for blind image restoration. Acta Automatica Sinica, 2013, 39(4): 418-423 (成孝刚, 安明伟, 阮雅端, 陈启美. 基于变分的盲图像复原质量评价指标. 自动化学报, 2013, 39(4): 418-423)
|
[6]
|
Lu Ya-Nan, Xie Feng-Ying, Zhou Shi-Xin, Jiang Zhi-Guo, Meng Ru-Song. Non-reference quality assessment of dermoscopy images with defocus blur and uneven illumination distortion. Acta Automatica Sinica, 2014, 40(3): 480-488 (卢亚楠, 谢凤英, 周世新, 姜志国, 孟如松. 皮肤镜图像散焦模糊与光照不均混叠时的无参考质量评价. 自动化学报, 2014, 40(3): 480-488)
|
[7]
|
Serir A, Beghdadi A, Kerouh F. No-reference blur image quality measure based on multiplicative multiresolution decomposition. Journal of Visual Communication and Image Representation, 2013, 24(7): 911-925
|
[8]
|
Oh T, Park J, Seshadrinathan K, Lee S, Bovik A C. No-reference sharpness assessment of camera-shaken images by analysis of spectral structure. IEEE Transactions on Image Processing, 2014, 23(12): 5428-5439
|
[9]
|
Ye P, Doermann D. No-reference image quality assessment using visual codebooks. IEEE Transactions on Image Processing, 2012, 21(7): 3129-3138
|
[10]
|
Mittal A, Moorthy A K, Bovik A C. No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708
|
[11]
|
Dong Hong-Ping, Liu Li-Xiong. No-reference image quality assessment in mutual information domain. Journal of Image and Graphics, 2014, 19(3): 484-492 (董宏平, 刘利雄. 互信息域中的无参考图像质量评价. 中国图象图形学报, 2014, 19(3): 484-492)
|
[12]
|
Liu L X, Liu B, Huang H, Bovik A C. No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication, 2014, 29(8): 856-863
|
[13]
|
Xue W F, Mou X Q, Zhang L, Bovik A C, Feng X C. Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Transactions on Image Processing, 2014, 23(11): 4850-4862
|
[14]
|
Sang Q B, Wu X J, Li C F, Bovik A C. Blind image quality assessment using a reciprocal singular value curve. Signal Processing: Image Communication, 2014, 29(10): 1149-1157
|
[15]
|
Saad M A, Bovik A C, Charrier C. Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 2012, 21(8): 3339-3352
|
[16]
|
Moorthy A K, Bovik A C. Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 2011, 20(12): 3350-3364
|
[17]
|
Zhang Y, Moorthy A K, Chandler D M, Bovik A C. C-DIIVINE: No-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Signal Processing: Image Communication, 2014, 29(7): 725-747
|
[18]
|
Liu L X, Dong H P, Huang H, Bovik A C. No-reference image quality assessment in curvelet domain. Signal Processing: Image Communication, 2014, 29(4): 494-505
|
[19]
|
Li Y M, Po L M, Xu X Y, Feng L T. No-reference image quality assessment using statistical characterization in the shearlet domain. Signal Processing: Image Communication, 2014, 29(7): 748-759
|
[20]
|
Lu F F, Zhao Q F, Yang G K. A no-reference image quality assessment approach based on steerable pyramid decomposition using natural scene statistics. Neural Computing and Applications, 2015, 26(1): 77-90
|
[21]
|
Li Y M, Po L M, Xu X Y, Feng L T, Yuan F, Cheung C H, Cheung K W. No-reference image quality assessment with shearlet transform and deep neural networks. Neurocomputing, 2015, 154: 94-109
|
[22]
|
Tsagarisv V, Anastassopoulos V. Multispectral image fusion for improved RGB representation based on perceptual attributes. International Journal of Remote Sensing, 2005, 26(15): 3241-3254
|
[23]
|
Ponomarenko N N, Lukin V V, Zelensky A, Egiazarian K, Carli M, Battisti F. TID2008---A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 2009, 10: 30-45
|
[24]
|
Mittal A, Soundararajan R, Bovik A C. Making a 'Completely Blind' image quality analyzer. IEEE Signal Processing Letters, 2012, 20(3): 209-212
|
[25]
|
Ruderman D L. The statistics of natural images. Network: Computation in Neural Systems, 1994, 5(4): 517-548
|
[26]
|
Kovesi P. Phase congruency detects corners and edges. In: Proceedings of the 7th International Conference on Digital Image Computing: Techniques and Applications. Sydney, Australia, 2003. 309-318
|
[27]
|
Klotz J G, Kracht D, Bossert M, Schober S. Canalizing boolean functions maximize mutual information. IEEE Transactions on Information Theory, 2014, 60(4): 2139-2147
|
[28]
|
Chang C C, Lin C C. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): Article No. 27
|