[1]
|
Coello C C, Lamont G B, Van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-objective Problems (2nd edition). New York: Springer, 2007. 3-57
|
[2]
|
[2] Gong M Guo, Jiao L C, Yang D D, Ma W P. Research on evolutionary multi-objective optimization algorithms. Journal of Software, 2009, 20(2): 271-289
|
[3]
|
Jiao Li-Cheng, Shang Rong-Hua, Ma Wen-Ping, Gong Mao-Guo, Li Yang-Yang, Liu Fang. Multi-Objective Optimization Immune Algorithm, the Theory and Application. Beijing: Science Press, 2010. 3-27(焦李成, 尚荣华, 马文萍, 公茂果, 李阳阳, 刘芳. 多目标优化免疫算法、理论和应用. 北京: 科学出版社, 2010. 3-27
|
[4]
|
[4] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601
|
[5]
|
[5] Yang S X, Li M Q, Liu X H, Zheng J H. A grid-based evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 2013, 17(5): 721-736
|
[6]
|
Cui Xun-Xue. Multiobjective Evolutionary Algorithms and Their Applications. Beijing: National Defence Industry Press, 2006. (崔逊学. 多目标进化算法及其应用. 北京: 国防工业出版社, 2006.
|
[7]
|
Zheng Jin-Hua. Multiobjective Evolutionary Algorithms and Their Application. Beijing: Science Press, 2007. (郑金华. 多目标进化算法及其应用. 北京: 科学出版社, 2007.
|
[8]
|
[8] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197
|
[9]
|
[9] Corne D W, Jerram N R, Knowles J D, Oates M J. PESA-II: region-based selection in evolutionary multiobjective optimization. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference. San Francisco, USA: Morgan Kaufmann Publishers, 2001. 283-290
|
[10]
|
Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. In: Proceedings of the 2002 International Conference on Evolutionary Methods for Design, Optimization and Control with Application to Industrial Problems. Berlin: Springer, 2002. 95-100
|
[11]
|
Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731
|
[12]
|
Bi Xiao-Jun, Zhang Yong-Jian, Shen Ji-Hong. High-dimensional multi-objective multi-directional co-evolutionary algorithm. Control and Decision, 2014, 29(10): 1737-1743(毕晓君, 张永建, 沈继红. 高维多目标多方向协同进化算法. 控制与决策, 2014, 29(10): 1737-1743
|
[13]
|
Deb K, Mohan M, Mishra S. Evaluating the -domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation, 2005, 13(4): 501-525
|
[14]
|
Sinha A, Saxena D K, Deb K, Tiwari A. Using objective reduction and interactive procedure to handle many-objective optimization problems. Applied Soft Computing, 2013, 13(1): 415-427
|
[15]
|
Jaimes A L, Coello C A C, Chakraborty D. Objective reduction using a feature selection technique. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2008. 673-680
|
[16]
|
Zitzler E, Knzli S. Indicator-based selection in multiobjective search. In: Proceedings of the 8th International Conference. Parallel Problem Solving from Nature-PPSN VIII. Birmingham, UK: Springer, 2004. 832-842
|
[17]
|
Gong Dun-Wei, Ji Xin-Fang, Sun Xiao-Yan. Solving many-objective optimization problems using set-based evolutionary algorithms. Chinese Journal of Electronics, 2014, 42(1): 77-83(巩敦卫, 季新芳, 孙晓燕. 基于集合的高维多目标优化问题的进化算法. 电子学报, 2014, 42(1): 77-83
|
[18]
|
Jiao L C, Wang H D, Shang R H, Liu F. A co-evolutionary multi-objective optimization algorithm based on direction vectors. Information Sciences, 2013, 228: 90-112
|
[19]
|
Reynoso-Meza G, Sanchis J, Blasco X, Martnez M. Design of continuous controllers using a multiobjective differential evolution algorithm with spherical pruning. Applications of Evolutionary Computation. Berlin: Springer-Verlag, 2010. 532-541
|
[20]
|
Tang L X, Wang X P. A Hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2013, 17(1): 20-45
|
[21]
|
Zhan Wei. Research on Manifold Learning Algorithm for High-Dimensional Multi-Objective Optimization Problems [Ph.D. dissertation], China University of Geosciences, China, 2013.(詹炜. 求解高维多目标优化问题的流形学习算法研究 [博士学位论文], 武汉: 中国地质大学, 中国, 2013.)
|
[22]
|
Agrawal R B, Deb K, Agrawal R B. Simulated binary crossover for continuous search space. Complex Systems, 1995, 9: 115-148
|
[23]
|
Hinterding R. Gaussian mutation and self-adaption for numeric genetic algorithms. In: Proceedings of the 1995 IEEE Conference on Evolutionary Computation. Perth, WA, Australia: IEEE, 1995, 1: 384-389
|
[24]
|
Liu Y Z, Li S F. A new differential evolutionary algorithm with neighborhood search. Information Technology Journal, 2011, 10: 573-578
|
[25]
|
Deb K, Thiele L, Laumanns M, Zitzler E. Scalable Test Problems for Evolutionary Multiobjective Optimization. London: Springer, 2005. 105-145
|
[26]
|
Van Veldhuizen D A, Lamont G B. On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA: IEEE, 2000, 1: 204-211
|
[27]
|
Zhou A M, Jin Y C, Zhang Q F, Sendhoff B, Tsang E. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computation. Vancouver, BC: IEEE, 2006. 892-899
|
[28]
|
Tan K C, Yang Y J, Goh C K. A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 527-549
|
[29]
|
Tamhane A C. Multiple comparisons in model I one-way ANOVA with unequal variances. Communications in Statistics, 1977, 6(1): 15-32
|