2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维最优持久编队拓扑生成策略

王金然 罗小元 杨帆 关新平

王金然, 罗小元, 杨帆, 关新平. 三维最优持久编队拓扑生成策略. 自动化学报, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474
引用本文: 王金然, 罗小元, 杨帆, 关新平. 三维最优持久编队拓扑生成策略. 自动化学报, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474
WANG Jin-Ran, LUO Xiao-Yuan, YANG Fan, GUAN Xin-Ping. Generation Strategy of Optimal Persistent Formation Topology in 3D Space. ACTA AUTOMATICA SINICA, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474
Citation: WANG Jin-Ran, LUO Xiao-Yuan, YANG Fan, GUAN Xin-Ping. Generation Strategy of Optimal Persistent Formation Topology in 3D Space. ACTA AUTOMATICA SINICA, 2015, 41(6): 1123-1130. doi: 10.16383/j.aas.2015.c140474

三维最优持久编队拓扑生成策略

doi: 10.16383/j.aas.2015.c140474
基金项目: 

国家重点基础研究发展计划(973计划) (2010CB731800), 国家自然科学基金(61074065, 61375105), 河北省自然科学基金(F2012203119)资助

详细信息
    作者简介:

    王金然 讲师. 燕山大学电气工程学院控制科学与工程专业博士研究生. 主要研究方向为多智能体刚性编队和持久编队. E-mail: lzx13315666200@126.com

    通讯作者:

    罗小元 燕山大学电气工程学院教授.2005 年于燕山大学获得博士学位. 主要研究方向为多智能体协调控制, 网络系统预测控制. E-mail: xyluo@ysu.edu.cn

Generation Strategy of Optimal Persistent Formation Topology in 3D Space

Funds: 

Supported by National Basic Research Program of China (973 Program) (2010CB731800), National Natural Science Foundation of China (61074065, 61375105), and Nature Science Foundation of Hebei Province (F2012203119)

  • 摘要: 针对智能体间的通信拓扑优化问题, 结合图论知识研究了三维空间中最优持久图的生成算法. 首先,利用刚度矩阵生成最优刚性图;然后,根据顶点连通度数的不同分别采取有向化操作方法, 通过逐层缩小最优刚性图范围的方式把刚性图持久化,生成了最优持久图;最后, 对三维空间中随机分布的智能体进行仿真实验,其结果验证了该算法的可行性和有效性, 此算法能降低编队拓扑的通信复杂度,减少通信能量消耗.
  • [1] Dasgupta P. A multi-agent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(3): 549-563
    [2] [2] Lu X Q, Austin F, Chen S H. Flocking in multi-agent systems with active virtual leader and time-varying delays coupling. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 1014-1026
    [3] [3] Han K, Lee J, Kim Y. Unmanned aerial vehicle swarm control using potential functions and sliding-mode control. Proceedings of the IMechE Part G: Journal of Aerospace Engineering, 2008, 222(6): 721-730
    [4] [4] Yu C B, Hendrickx J M, Fidan B, Anderson B D O, Blondel V D. Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica, 2007, 43(3): 387-402
    [5] [5] Tanner H G, Christodoulakis D K. Decentralized cooperative control of heterogeneous vehicle groups. Robotics and Autonomous systems, 2007, 55(11): 811-823
    [6] [6] Bui L D, Kim Y G. An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation. Fuzzy Sets and Systems, 2006, 157(4): 560-577
    [7] [7] Hendrickx J M, Anderson B D O, Blondel V D. Rigidity and persistence of directed graphs. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 2176-2181
    [8] [8] Yu J Y, Wang L. Group consensus in multi-agent systems with switching topologies and communication delays. Systems Control Letters, 2010, 59(6): 340-348
    [9] Yu Hong-Wang, Zheng Yu-Fan. Dynamic behavior of multi-agent systems with distributed sampled control. Acta Automatica Sinica, 2012, 38(3): 357-365(余宏旺, 郑毓蕃 . 多智能体系统在分布式采样控制下的动力学行为. 自动化学报, 2012, 38(3): 357-365)
    [10] Ren R, Zhang Y Y, Luo X Y, Li S B. Automatic generation of optimally rigid formations using decentralized methods. International Journal of Automation and Computing, 2010, 7(4): 557-564
    [11] Smith B S, Egerstedt M, Howard A. Automatic generation of persistent formations for multi-agent networks under range constraints. Mobile Networks and Applications, 2009, 14(3): 322-335
    [12] Hendrickx J M, Fidan B, Yu C, Anderson B D O, Blondel V D. Formation reorganization by primitive operations on directed graphs. IEEE Transactions on Automatic Control, 2008, 53(4): 968-979
    [13] Hendrickx J M, Fidan B, Yu C, Anderson B D O, Blondel V D. Elementary operations for the reorganization of minimally persistent formations. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan: IEEE, 2006. 859-873
    [14] Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent system. Acta Automatica Sinica, 2013, 39(9): 1431-1438(罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制. 自动化学报, 2013, 39(9): 1431-1438)
    [15] Luo X Y, Shao S K, Guan X P. Automatic generation of min-weighted persistent formations. Chinese Physics B, 2009, 18(8): 3104-3114
    [16] Cao H, Bai Y Q, Chen J, Fang H. Control of 2D minimally persistent formations with three co-leaders in a cycle. International Journal of Advanced Robotic Systems, 2013, 10(21): 1-9
    [17] Wen G G, Yu Y G. Research of Multi-agent Persistent Formation Movement Control [Master dissertation], Beijing Jiaotong University, China, 2009.
    [18] Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127
    [19] Liu X Y, Chen Y L. Application of Dijkstra algorithm in logistics distribution lines. In: Proceedings of the 3rd International Symposium on Computer Science and Computational Technology. Jiaozuo, China: IEEE, 2010. 48-50
  • 加载中
计量
  • 文章访问数:  1515
  • HTML全文浏览量:  114
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-03
  • 修回日期:  2014-10-27
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回