[1]
|
Dasgupta P. A multi-agent swarming system for distributed automatic target recognition using unmanned aerial vehicles. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(3): 549-563
|
[2]
|
[2] Lu X Q, Austin F, Chen S H. Flocking in multi-agent systems with active virtual leader and time-varying delays coupling. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(2): 1014-1026
|
[3]
|
[3] Han K, Lee J, Kim Y. Unmanned aerial vehicle swarm control using potential functions and sliding-mode control. Proceedings of the IMechE Part G: Journal of Aerospace Engineering, 2008, 222(6): 721-730
|
[4]
|
[4] Yu C B, Hendrickx J M, Fidan B, Anderson B D O, Blondel V D. Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica, 2007, 43(3): 387-402
|
[5]
|
[5] Tanner H G, Christodoulakis D K. Decentralized cooperative control of heterogeneous vehicle groups. Robotics and Autonomous systems, 2007, 55(11): 811-823
|
[6]
|
[6] Bui L D, Kim Y G. An obstacle-avoidance technique for autonomous underwater vehicles based on BK-products of fuzzy relation. Fuzzy Sets and Systems, 2006, 157(4): 560-577
|
[7]
|
[7] Hendrickx J M, Anderson B D O, Blondel V D. Rigidity and persistence of directed graphs. In: Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE, 2005. 2176-2181
|
[8]
|
[8] Yu J Y, Wang L. Group consensus in multi-agent systems with switching topologies and communication delays. Systems Control Letters, 2010, 59(6): 340-348
|
[9]
|
Yu Hong-Wang, Zheng Yu-Fan. Dynamic behavior of multi-agent systems with distributed sampled control. Acta Automatica Sinica, 2012, 38(3): 357-365(余宏旺, 郑毓蕃 . 多智能体系统在分布式采样控制下的动力学行为. 自动化学报, 2012, 38(3): 357-365)
|
[10]
|
Ren R, Zhang Y Y, Luo X Y, Li S B. Automatic generation of optimally rigid formations using decentralized methods. International Journal of Automation and Computing, 2010, 7(4): 557-564
|
[11]
|
Smith B S, Egerstedt M, Howard A. Automatic generation of persistent formations for multi-agent networks under range constraints. Mobile Networks and Applications, 2009, 14(3): 322-335
|
[12]
|
Hendrickx J M, Fidan B, Yu C, Anderson B D O, Blondel V D. Formation reorganization by primitive operations on directed graphs. IEEE Transactions on Automatic Control, 2008, 53(4): 968-979
|
[13]
|
Hendrickx J M, Fidan B, Yu C, Anderson B D O, Blondel V D. Elementary operations for the reorganization of minimally persistent formations. In: Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems. Kyoto, Japan: IEEE, 2006. 859-873
|
[14]
|
Luo Xiao-Yuan, Shao Shi-Kai, Guan Xin-Ping, Zhao Yuan-Jie. Dynamic generation and control of optimally persistent formation for multi-agent system. Acta Automatica Sinica, 2013, 39(9): 1431-1438(罗小元, 邵士凯, 关新平, 赵渊洁. 多智能体最优持久编队动态生成与控制. 自动化学报, 2013, 39(9): 1431-1438)
|
[15]
|
Luo X Y, Shao S K, Guan X P. Automatic generation of min-weighted persistent formations. Chinese Physics B, 2009, 18(8): 3104-3114
|
[16]
|
Cao H, Bai Y Q, Chen J, Fang H. Control of 2D minimally persistent formations with three co-leaders in a cycle. International Journal of Advanced Robotic Systems, 2013, 10(21): 1-9
|
[17]
|
Wen G G, Yu Y G. Research of Multi-agent Persistent Formation Movement Control [Master dissertation], Beijing Jiaotong University, China, 2009.
|
[18]
|
Lin Z Y, Francis B, Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE Transactions on Automatic Control, 2005, 50(1): 121-127
|
[19]
|
Liu X Y, Chen Y L. Application of Dijkstra algorithm in logistics distribution lines. In: Proceedings of the 3rd International Symposium on Computer Science and Computational Technology. Jiaozuo, China: IEEE, 2010. 48-50
|