[1]
|
Caetano T S, Caelli T, Schuurmans D, Barone D. Graphical models and point pattern matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10):1646-1663
|
[2]
|
[2] Cootes T F, Taylor C J, Cooper D H, Graham J. Active shape modelstheir training and applications. Computer Vision and Image Understanding, 1995, 61(1):38-59
|
[3]
|
[3] Czogiel I, Dryden I, Brignell C. Bayesian matching of unlabeled marked point sets using random fields with application to molecular alignment. Annals of Applied Statistics, 2011, 5(4):2603-2629
|
[4]
|
[4] Schmidler S C. Fast Bayesian shape matching using geometric algorithms. Bayesian Statistics, 2007, 8:471-490
|
[5]
|
[5] Pilet J, Lepetit V, Fua P. Real-time non-rigid surface detection. In:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA:IEEE, 2005. 822-828
|
[6]
|
[6] Simpson I J A, Schnabel J A, Groves A R, Andersson J L R, Woolrich M W. Probabilistic inference of regularisation in non-rigid registration. NeuroImage, 2012, 59(3):2438-2451
|
[7]
|
[7] Gu L, Kanade T. A generative shape regularization model for robust face alignment. In:Proceedings of the 10th European Conference on Computer Vision. Marseille, France:Springer, 2008. 413-426
|
[8]
|
[8] Wamelen P B V, Li Z, Iyengar S. A fast expected time algorithm for the 2-D point pattern matching problem. Pattern Recognition, 2004, 37(8):1699-1711
|
[9]
|
Zhou Zhi-Yong, Li Li-Hua, Zheng Jian, Kuai Duo-Jie, Hu Su, Zhang Tao. Point sets non-rigid registration using student's-t mixture model with spatial constraints. Acta Automatica Sinica, 2014, 40(4):683-696(周志勇, 李莉华, 郑健, 蒯多杰, 胡粟, 张涛. 含局部空间约束的t分布混合模型的点集配准. 自动化学报, 2014, 40(4):683-696)
|
[10]
|
Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):239-256
|
[11]
|
Lu C P, Mjolsness E. Two-dimensional object localization by coarse-to-fine correlation matching. Advances in Neural Information Processing Systems, 1994, 6:985-992
|
[12]
|
Zhang Z. Iterative point matching for registration of freeform curves and surfaces. International Journal of Computer Vision, 1994, 13(2):119-152
|
[13]
|
Lowe D G. Object recognition from local scale-invariant features. In:Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999, 2:1150 -1157
|
[14]
|
Bay H, Tuytelaars T, van Gool L. SURF:speeded up robust features. In:Proceedings of the 9th European Conference on Computer Vision. Graz, Austria:Springer, 2006. 404-417
|
[15]
|
Pachauri D, Kondor R, Singh V. Solving the multiway matching problem by permutation synchronization. Advances in Neural Information Processing Systems, 2013, 26:1860-1868
|
[16]
|
Pizarro D, Bartoli A. Feature-based deformable surface detection with self-occlusion reasoning. International Journal of Computer Vision, 2012, 97(1):54-70
|
[17]
|
Zhao J, Ma J Y, Tian J W, Ma J, Zhang D Z. A robust method for vector field learning with application to mismatch removing. In:Proceedings of the 2011 Computer Vision and Pattern Recognition. Colorado Springs, USA:IEEE, 2011. 2977-2984
|
[18]
|
Mardia K V, Nyirongo V B, Fallaize C J, Barber S, Jackson R M. Hierarchical Bayesian modelling of pharmacophores in Bioinformatics. Biometrics, 2011, 67(2):617-619
|
[19]
|
Mardia K V, Fallaize C J, Barber S, Jackson R M, Theobald D L. Bayesian alignment of similarity shapes. Annals of Applied Statistics, 2013, 7(2):989-1009
|
[20]
|
Liu Y. Automatic 3D free form shape matching using the graduated assignment algorithm. Pattern Recognition, 2005, 38(10):1615-1631
|
[21]
|
Tsin T, Kanade T. A correlation-based approach to robust point set registration. In:Proceedings of the 8th European Conference on Computer Vision. Prague, Czech:Springer, 2004. 558-569
|
[22]
|
Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and Image Understanding, 2003, 89(2-3):114-141
|
[23]
|
Jian B, Vemuri C C. Robust point set registration using Gaussian mixture models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1633-1645
|
[24]
|
Ma J Y, Zhao J, Tian J W, Tu Z W, Yuille A. Robust estimation of nonrigid transformation for point set registration. In:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio, USA:IEEE, 2013. 2147-2154
|
[25]
|
Myronenko A, Song X. Point set registration:coherent point drift. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12):2262-2275
|
[26]
|
Horaud R P, Forbes F, Yguel M, Dewaele G D, Zhang J. Rigid and articulated point registration with expectation conditional maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3):587-602
|
[27]
|
Almhdie A, Lger C, Deriche M, Lde R. 3D registration using a new implementation of the ICP algorithm based on a comprehensive lookup matrix:application to medical imaging. Pattern Recognition Letters, 2007, 28(12):1523-1533
|
[28]
|
Dorai C, Wang G, Jain A, Mercer C. From images to models:automatic 3D object model construction from multiple views. In:Proceedings of the 13th International Conference on Pattern Recognition. Vienna, Austria:IEEE, 1996. 770-774
|
[29]
|
Hahnel D, Thrun S, Burgard W. An extension of the ICP algorithm for modelling nonrigid objects with mobile robots. In:Proceedings of the 18th International Conference on Artificial Intelligence. Acapulco, Mexico:Morgan Kaufmann, 2003. 915-920
|
[30]
|
Liu Y. Automatic registration of overlapping 3D point clouds using closest points. Image and Vision Computing, 2006, 24(7):762-781
|
[31]
|
Chui H, Rangarajan A. A feature registration framework using mixture models. In:Proceedings of the 2000 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. Hilton Head Island, USA:IEEE, 2000. 190-197
|
[32]
|
Hou S, Galata A. Robust estimation of Gaussian mixtures from noisy input data. In:Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA:IEEE, 2008. 1-8
|
[33]
|
Govindu V M, Werman M. On using priors in affine matching. Image and Vision Computing, 2004, 22(14):1157-1164
|
[34]
|
Hastie T J, Tibshirani R J. Generalized Additive Models. London, UK:Chapman and Hall, 1990.
|
[35]
|
D'Souza A, Vijayakumar S, Schaal S. The Bayesian backfitting relevance vector machine. In:Proceedings of the 21st International Conference on Machine Learning. Banff, Alberta, Canada:ACM, 2004. 31
|
[36]
|
Hu B G, Qu H B, Wang Y, Yang S H. A generalized-constraint neural network model:associating partially known relationships for nonlinear regression. Information Sciences, 2009, 179(12):1929-1943
|
[37]
|
Qu H B, Hu B G. Variational Bayes inference for generalized associative functional networks. In:Proceedings of the 2007 International Joint Conference on Neural Networks. Orlando, FL, USA:IEEE, 2007. 184-189
|
[38]
|
Roberts S J, Penny W D. Variational Bayes for generalized autoregressive models. IEEE Transactions on Signal Processing, 2002, 50(9):2245-2257
|
[39]
|
Bishop C M. Pattern Recognition and Machine Learning. Spring Street, NY:Springer, 2006.
|
[40]
|
Beal M J. Variational Algorithms for Approximate Bayesian Inference [Ph.D. dissertation], University of Cambridge, UK, 2003.
|
[41]
|
MacKay D J C. Bayesian non-linear modeling for the prediction competition. Maximum Entropy and Bayesian Methods, 1996, 62:221-234
|
[42]
|
Lawrence N D, Bishop C M. Variational Bayesian Independent Component Analysis. Technical Report, Computer Laboratory, University of Cambridge, UK, 2000.
|
[43]
|
Beal M, Ghahramani Z. The variational Bayesian EM algorithm for incomplete data:with application to scoring graphical model structures. Bayesian Statistics, 2003, 7:453 -464
|
[44]
|
Choudrey R A. Variational Methods for Bayesian Independent Component Analysis [Ph.D. dissertation], University of Oxford, UK, 2002.
|
[45]
|
Hensman J, Rattray M, Lawrence N. Fast variational inference in the conjugate exponential family. Advances in Neural Information Processing Systems, 2012, 25:2897-2905
|
[46]
|
Valpola H, Honkela A. Hyperparameter Adaptation in Variational Bayes for the Gamma Distribution. Technical Report, Laboratory of Computer and Information Science, Helsinki University of Technology, FI, 2006.
|
[47]
|
Kaji D, Watanabe S. Two design methods of hyperparameters in variational Bayes learning for Bernoulli mixtures. Neuralcomputing, 2011, 74(11):2002-2007
|
[48]
|
Bergstra J B, Bengio Y. Random search for hyperparameter optimization. Journal of Machine Learning Research, 2012, 13(1):281-305
|