Research on Temporal Consistency and Robustness in Local Planning of Intelligent Vehicles
-
摘要: 在无人驾驶系统中,局部规划在跟踪全局路径的同时完成避障,提高了规划系统在动态未知环境中的工作能力.避障分析的有效性是局部规划最重要的功能之一.然而在仿真和实车测试中发现,广泛使用的基于优化求解的局部规划算法无法在不依赖全局精确定位时保证规划结果满足时间一致性要求.时间不一致将导致车辆的实际行驶路线偏离初始规划结果,造成避障分析失效.本文设计了基于前向预测的局部路径规划算法,在不依赖全局精确定位的前提下保证规划结果的时间一致性.除了时间一致性问题外,跟踪控制误差也是导致规划结果避障分析失效的主要原因之一.现有研究大多通过膨胀障碍物体现误差的影响,然而这种方法无法避免车辆驶入膨胀危险区域而停车.本算法在路径生成过程中增加误差影响,用通行区域代替原有不具有宽度的规划路径进行避障分析,既可以解决误差导致的避障失效,又避免出现膨胀障碍物带来的问题.通过V-Rep软件与实车规划程序进行联合仿真,在能够体现时间一致性影响的典型场景中对本算法与基于最优化曲线生成的局部路径规划算法进行比较, 验证了该算法具有更好的安全分析有效性.应用本算法的北京理工大学无人驾驶平台参加了2013年智能车未来挑战赛,在无人干预的情况下顺利完成 18公里城郊赛段和5公里城市赛段行驶,展现了良好的避障能力.Abstract: Local planner can improve the capacity of planning system for intelligent vehicles by avoiding obstacles while tracking the reference path. Safety check is the one of the fundamental functions of a local planner. However, revealed by simulation and experiments, the widely used optimization-based local planning methods are unlikely to maintain temporal consistency without any accurate global positioning information. Temporal inconsistency will result in the deviation of the vehicle's actual trajectory from the original planned results, which will finally make the safety check invalid. This paper presents a forward prediction-based local planning algorithm which holds temporal consistency in the results without requiring any accurate global positioning information. Besides the temporal consistency issue, controlling error is another reason for safety check failure. Most current researches take error into consideration by enlarging the size of obstacles. Such methods are unable to prevent the vehicle from entering the dilated obstacle areas. In this paper, controlling error is introduced in the generation of the local paths. The traditional path with no width is replaced by a strip of path here. Based on the simulation results of the V-Rep virtual reality software, the forward prediction-based method features better safety check ability as compared with the optimization-based local planning methods. The proposed algorithm was applied to the intelligent vehicle by Beijing Institute of Technology which participated in The Future Challenge 2013. The vehicle succeeded to finish the event without human operation.
-
Key words:
- Intelligent vehicle /
- local planning /
- temporary consistency /
- robustness
-
[1] Urmson C, Anhalt J, Bagnell D, Baker C, Bittner P, Clark M N, Dolan J, Duggins D, Galatali T, Geyer C, Gittleman M, Harbaugh S, Hebert M, Howard T M, Kolski S, Kelly A, Likhachev M, McNaughton M, Miller N, Peterson K, Pilnick B, Rajkumar R, Rybski P, Salesky B, Seo Y W, Singh S, Snider J, Stentz A, Whittaker W, Wolkowicki Z, Ziglar J, Bae H, Brown T, Demitrish D, Litkouhi B, Nickolaou J, Sadekar V, Zhang W, Struble J, Taylor M, Darms M, Ferguson D. Autonomous driving in urban environments: boss and the urban challenge. Journal of Field Robotics, 2008, 25(8): 425-466 [2] [2] Montemerlo M, Becker J, Bhat S, Dahlkamp H, Dlogov D, Ettinger S, Haehnel A, Hilden T, Hoffmann G, Huhnke B, Johnston D, Klumpp S, Langer D, Levandowski A, LevinsonJ, Marcil J, Orenstein D, Paefgen J, Penny I, Petrovskaya A, Pflueger M, Stanek G, Stavens D, Vogt A, Thrun S. Junior: the Stanford entry in the urban challenge. Journal of Field Robotics, 2008, 25(9): 569-597 [3] [3] Leonard J, How J, Teller S, Berger M, Campbell S, Fiore G, Fletcher L, Frazzoli E, Huang A, Karaman S, Koch O, Kuwata Y, Moore D, Olson E, Peters S, Teo J, Truax R, Walter M, Barrett D, Epstein A, Maheloni K, Moyer K, Jones T, Buckley R, Antone M, Galejs R, Krishnamurthy S, Williams J. A perception-driven autonomous urban vehicle. Journal of Field Robotics, 2008, 25(10): 727-774 [4] [4] Bacha A, Bauman C, Faruque R, Fleming M, Terwelp C, Reinholtz C, Hong D, Wicks A, Alberi T, Anderson D, Cacciola S, Currier P, Dalton A, Farmer J, Hurdus J, Kimme S, King P, Taylor A, Van Covern D, Webster M. Odin: team Victor Tango's entry in the DARPA urban challenge. Journal of Field Robotics, 2008, 25(8): 467-492 [5] [5] Borrelli F, Falcone P, Keviczky T, Asgari J, Hrovat D. MPC-based approach to active steering for autonomous vehicle systems. International Journal on Vehicle Autonomous Systems, 2005, 3(2-4): 265-291 [6] [6] Anderson S J, Peters S C, Pilutti T E, Lagnemma K. An optimal-control-based framework for trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. International Journal of Vehicle Autonomous Systems, 2010, 8(2-4): 190-216 [7] [7] Von Hundelshausen F, Himmelsbach M, Hecker F, Mueller A, Wuensche H J. Driving with tentacles: integral structures for sensing and motion. Journal of Field Robotics, 2008, 25(9): 640-673 [8] Jiang Yan, Gong Jian-Wei, Xiong Guang-Ming, Chen Hui-Yan. Research on differential constraints-based planning algorithm for autonomous-driving vehicles. Acta Automatica Sinica, 2013, 39(12): 2012-2020(姜岩, 龚建伟, 熊光明, 陈慧岩. 基于运动微分约束的无人车辆纵横向协同规划算法的研究. 自动化学报, 2013, 39(12): 2012-2020) [9] [9] Chu K, Lee M, Sunwoo M. Local path planning for off-road autonomous driving with avoidance of static obstacles. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1599-1616 [10] Xu W D, Wei J Q, Dolan J M, Zhao H J, Zha H B. A real-time motion planner with trajectory optimization for autonomous vehicles. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul, Minnesota, USA: IEEE, 2012. 2061-2067 [11] Kydland F E, Prescott E C. Rules rather than discretion: the inconsistency of optimal plans. The Journal of Political Economy, 1977, 85(3): 473-492. [12] Werling M, Ziegler J, Kammel S, Thrun S. Optimal trajectory generation for dynamic street scenarios in a frent frame. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska, USA: IEEE, 2010. 987-993 [13] Ziegler J, Stiller C. Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St Louis, USA: IEEE, 2009. 1879-1884 [14] Li X H, Sun Z P, Chen Q Y, Liu D X. An adaptive preview path tracker for off-road autonomous driving. In: Proceedings of the 10th IEEE International Conference on Control and Automation (ICCA). Hangzhou, China: IEEE, 2013. 1718-1723 [15] Broggi A, Bertozzi M, Fascioli A, Guarino C, Lo Bianco C G, Piazzi A. The argo autonomous vehicle's vision and control systems. International Journal of Intelligent Control and Systems, 1999, 3(4): 409-441 [16] Kammel S, Ziegler J, Pitzer B, Werling M, Gindele T, Jagzent D, Schroder J, Thuy M, Goebl M, Von Hundelshausen F, Pink O, Frese C, Stiller C. Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge. Journal of Field Robotics, 2008, 25(9): 615-639 期刊类型引用(29)
1. 刘辉,王振辉,陈洪月,郑雨新. 基于虚拟前轮反馈控制算法的履带车轨迹跟踪方案研究. 机械设计. 2024(01): 117-124 . 百度学术
2. 吴晓建,廖平伟,雷耀,江会华,王爱春,胡家琦. 面向结构化道路的智能驾驶轨迹规划一致性研究. 汽车工程. 2024(03): 383-395+430 . 百度学术
3. 陈庚,郑晟. 一种管道工程机器人路径跟踪控制方法. 计算机仿真. 2024(04): 402-407 . 百度学术
4. 戢杨杰,张馨雨,杨紫茹,周上航,黄岩军,曹建永,熊璐,余卓平. 多智能网联汽车轨迹规划:现状与展望. 机械工程学报. 2024(10): 129-146 . 百度学术
5. Haijie Guan,Boyang Wang,Jiaming Wei,Yaomin Lu,Huiyan Chen,Jianwei Gong. Generation and Selection of Driver-Behavior-Based Transferable MotionPrimitives. Chinese Journal of Mechanical Engineering. 2022(01): 219-233 . 必应学术
6. 韦玉海,张辉,刘理,钟杭. 基于AMRRT-Connect算法的移动机器人路径规划. 武汉大学学报(工学版). 2022(05): 531-538 . 百度学术
7. 孙伶玉,付主木,陶发展,司鹏举,宋书中. 改进人工势场的智能车避障算法研究. 河南科技大学学报(自然科学版). 2022(05): 28-34+41+5-6 . 百度学术
8. 张珂,张利国. 基于移动边缘计算的GI/GI/1排队建模与调度算法. 自动化学报. 2022(07): 1737-1746 . 本站查看
9. 张勇,王同祥. 半挂式车辆自主驾驶的轨迹跟踪控制研究. 中国测试. 2021(02): 106-112 . 百度学术
10. 徐笑锋,肖英杰,章学来. 基于避碰规则自动驾驶船舶路径优化的研究进展. 交通信息与安全. 2021(02): 1-8 . 百度学术
11. 韩晓微,刘宏宇,石泽亮,刘晓. 移动机器人最小化snap与A~*的联合轨迹优化. 沈阳大学学报(自然科学版). 2021(04): 321-327+369 . 百度学术
12. 刘梓林,黎予生,郑玲. 基于非结构化环境点云稀疏表示的无人驾驶汽车局部路径规划方法. 机械工程学报. 2020(02): 163-173 . 百度学术
13. 郭丽娟,唐彬,陈梁远,张玉波. 基于RBF的履带车滑移转向运动学重建研究. 应用科技. 2020(01): 123-128 . 百度学术
14. 葛召浩,赵又群,林棻,闫茜. 基于人-车-路闭环系统的路径跟踪模型预测控制. 重庆理工大学学报(自然科学). 2020(05): 35-42 . 百度学术
15. 付泽林. 未来新兴技术对物流产业结构的影响——以无人驾驶技术为例. 中国物流与采购. 2020(20): 69-71 . 百度学术
16. 袁泉,吕迅捷. 基于PRM算法的移动小车路径规划优化研究. 宁波工程学院学报. 2020(04): 31-35 . 百度学术
17. 胡家铭,胡宇辉,陈慧岩,刘凯. 基于模型预测控制的无人驾驶履带车辆轨迹跟踪方法研究. 兵工学报. 2019(03): 456-463 . 百度学术
18. 徐杨,陆丽萍,褚端峰,黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报. 2019(04): 799-807 . 本站查看
19. 郭鹍,赵甲文,杜志啸,耿建宁. 基于ROS的智能船舶航行系统设计. 舰船电子工程. 2019(07): 45-48 . 百度学术
20. 段建民,田晓生,夏天,花晓峰. 基于中间速度的智能车辆梯形速度规划方法. 计算机工程. 2018(08): 301-307+314 . 百度学术
21. 熊光明,鲁浩,郭孔辉,陈慧岩. 基于滑动参数实时估计的履带车辆运行轨迹预测方法研究. 兵工学报. 2017(03): 600-607 . 百度学术
22. 张名芳,付锐,石涌泉,程文冬. 基于激光雷达的远距离运动车辆位姿估计. 公路交通科技. 2017(12): 131-139 . 百度学术
23. 孙扬,杨贺. 无人驾驶车辆智能水平等级划分. 科技导报. 2017(17): 80-83 . 百度学术
24. 封晶. 基于区域卷积神经网络的车辆检测方法. 科技广场. 2017(03): 10-14 . 百度学术
25. 王丽媛,郭戈,庄严. 网络控制系统发送功率分配问题研究. 自动化学报. 2017(08): 1350-1357 . 本站查看
26. 陈戈. 基于摄像头的路径信息采集系统的简易设计与实现. 自动化与仪器仪表. 2017(08): 71-73 . 百度学术
27. 关泉珍,鲍泓,史志坚. 基于A*算法的驾驶地图路径规划实现. 北京联合大学学报(自然科学版). 2016(02): 31-39 . 百度学术
28. 贾松敏,王成富,徐涛,张鹏. 基于模糊贝叶斯网络算法的智能轮椅避障. 计算机测量与控制. 2016(05): 153-155+159 . 百度学术
29. 刘萍,魏滢,缪斌. 电磁组智能车控制策略探讨及实现. 四川理工学院学报(自然科学版). 2016(02): 19-24 . 百度学术
其他类型引用(95)
-
计量
- 文章访问数: 2844
- HTML全文浏览量: 182
- PDF下载量: 2907
- 被引次数: 124