2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于样本密度和分类误差率的增量学习矢量量化算法研究

李娟 王宇平

李娟, 王宇平. 基于样本密度和分类误差率的增量学习矢量量化算法研究. 自动化学报, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311
引用本文: 李娟, 王宇平. 基于样本密度和分类误差率的增量学习矢量量化算法研究. 自动化学报, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311
LI Juan, WANG Yu-Ping. An Incremental Learning Vector Quantization Algorithm Based on Pattern Density and Classification Error Ratio. ACTA AUTOMATICA SINICA, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311
Citation: LI Juan, WANG Yu-Ping. An Incremental Learning Vector Quantization Algorithm Based on Pattern Density and Classification Error Ratio. ACTA AUTOMATICA SINICA, 2015, 41(6): 1187-1200. doi: 10.16383/j.aas.2015.c140311

基于样本密度和分类误差率的增量学习矢量量化算法研究

doi: 10.16383/j.aas.2015.c140311
基金项目: 

国家自然科学基金(61203372, 61472297)资助

详细信息
    作者简介:

    李娟 西安电子科技大学计算机学院博士研究生, 陕西师范大学远程教育学院讲师. 主要研究方向为数据挖掘, 模式识别.E-mail: ally 2004@126.com

    通讯作者:

    王宇平 西安电子科技大学计算机学院教授. 主要研究方向为进化计算, 运筹学,模式识别, 机器学习. E-mail: ywang@xidian.edu.cn

An Incremental Learning Vector Quantization Algorithm Based on Pattern Density and Classification Error Ratio

Funds: 

Supported by National Natural Science Foundation of China (61203372, 61472297)

  • 摘要: 作为一种简单而成熟的分类方法, K最近邻(K nearest neighbor, KNN)算法在数据挖掘、模式识别等领域获得了广泛的应用, 但仍存在计算量大、高空间消耗、运行时间长等问题. 针对这些问题, 本文在增量学习型矢量量化(Incremental learning vector quantization, ILVQ)的单层竞争学习基础上, 融合样本密度和分类误差率的邻域思想, 提出了一种新的增量学习型矢量量化方法, 通过竞争学习策略对代表点邻域实现自适应增删、合并、分裂等操作, 快速获取原始数据集的原型集, 进而在保障分类精度基础上, 达到对大规模数据的高压缩效应. 此外, 对传统近邻分类算法进行了改进, 将原型近邻集的样本密度和分类误差率纳入到近邻判决准则中. 所提出算法通过单遍扫描学习训练集可快速生成有效的代表原型集, 具有较好的通用性. 实验结果表明, 该方法同其他算法相比较, 不仅可以保持甚至提高分类的准确性和压缩比, 且具有快速分类的优势.
  • [1] Wu X D, Kumar V, Quinlan J R, Ghosh J, Yang Q, Motoda H, McLachlan G J, Ng A, Liu B, Yu P S, Zhou Z H, Steinbach M, Hand D J, Steinberg D. Top 10 algorithms in data mining. Knowledge and Information Systems, 2008, 14(1): 1-37
    [2] [2] Triguero I, Derrac J, Garcia S, Herrera F. A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 2012, 42(1): 86-100
    [3] [3] Rico-Juan J R, Iesta J M. New rank methods for reducing the size of the training set using the nearest neighbor rule. Pattern Recognition Letters, 2012, 33(5): 654-660
    [4] [4] Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1450-1464
    [5] [5] Wilson D L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on System, Man, and Cybernetics, 1972, SMC-2(3): 408-421
    [6] [6] Wilson D R, Martinez T R. Reduction techniques for instance-based learning algorithms. Machine Learning, 2000, 38(3): 257-286
    [7] [7] Chang C L. Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers, 1974, C-23(11): 1179-1184
    [8] [8] Raicharoen T, Lursinsap C. A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm. Pattern Recognition Letters, 2005, 26(10): 1554 -1567
    [9] [9] Kim S W, Oommen B J. Enhancing prototype reduction schemes with LVQ3-type algorithms. Pattern Recognition, 2003, 36(5): 1083-1093
    [10] Fayed H A, Atiya A F. A novel template reduction approach for the k-nearest neighbor method. IEEE Transactions on Neural Networks, 2009, 20(5): 890-896
    [11] Olvera-Lpez J A, Carrasco-Ochoa J A, Martnez-Trinidad J F. A new fast prototype selection method based on clustering. Pattern Analysis and Applications, 2010, 13(2): 131- 141
    [12] Kohonen T. Self-Organizing Maps (3rd Edition). New York: Springer-Verlag, 2001.
    [13] Polikar R, Byorick J, Krause S, Marino A, Moreton M. Learn++: a classifier independent incremental learning algorithm for supervised neural networks. In: Proceedings of the 2002 International Joint Conference on Neural Networks. Honolulu, HI: IEEE, 2002, 2: 1742-1747
    [14] Zheng J, Shen F R, Fan H J, Zhao J X. An online incremental learning support vector machine for large-scale data. Neural Computing and Applications, 2013, 22(5): 1023- 1035
    [15] Liu J, Lee J P Y, Li L J, Luo Z Q, Wong K M. Online clustering algorithms for radar emitter classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1185-1196
    [16] Seo S, Mohr J, Obermayer K. A new incremental pairwise clustering algorithm. In: Proceedings of the 2009 International Conference on Machine Learning and Applications. Miami Beach, FL: IEEE, 2009. 223-228
    [17] Xu Y, Shen F R, Zhao J X. An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications, 2012, 21(6): 1205-1215
    [18] Calaa Y P, Reyes E G, Alzate M O, Duin R P W. Prototype selection for dissimilarity representation by a genetic algorithm. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010. 177- 180
  • 加载中
计量
  • 文章访问数:  1401
  • HTML全文浏览量:  65
  • PDF下载量:  1016
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-08
  • 修回日期:  2014-09-27
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回