[1]
|
Wu X D, Kumar V, Quinlan J R, Ghosh J, Yang Q, Motoda H, McLachlan G J, Ng A, Liu B, Yu P S, Zhou Z H, Steinbach M, Hand D J, Steinberg D. Top 10 algorithms in data mining. Knowledge and Information Systems, 2008, 14(1): 1-37
|
[2]
|
[2] Triguero I, Derrac J, Garcia S, Herrera F. A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 2012, 42(1): 86-100
|
[3]
|
[3] Rico-Juan J R, Iesta J M. New rank methods for reducing the size of the training set using the nearest neighbor rule. Pattern Recognition Letters, 2012, 33(5): 654-660
|
[4]
|
[4] Angiulli F. Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(11): 1450-1464
|
[5]
|
[5] Wilson D L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on System, Man, and Cybernetics, 1972, SMC-2(3): 408-421
|
[6]
|
[6] Wilson D R, Martinez T R. Reduction techniques for instance-based learning algorithms. Machine Learning, 2000, 38(3): 257-286
|
[7]
|
[7] Chang C L. Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers, 1974, C-23(11): 1179-1184
|
[8]
|
[8] Raicharoen T, Lursinsap C. A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm. Pattern Recognition Letters, 2005, 26(10): 1554 -1567
|
[9]
|
[9] Kim S W, Oommen B J. Enhancing prototype reduction schemes with LVQ3-type algorithms. Pattern Recognition, 2003, 36(5): 1083-1093
|
[10]
|
Fayed H A, Atiya A F. A novel template reduction approach for the k-nearest neighbor method. IEEE Transactions on Neural Networks, 2009, 20(5): 890-896
|
[11]
|
Olvera-Lpez J A, Carrasco-Ochoa J A, Martnez-Trinidad J F. A new fast prototype selection method based on clustering. Pattern Analysis and Applications, 2010, 13(2): 131- 141
|
[12]
|
Kohonen T. Self-Organizing Maps (3rd Edition). New York: Springer-Verlag, 2001.
|
[13]
|
Polikar R, Byorick J, Krause S, Marino A, Moreton M. Learn++: a classifier independent incremental learning algorithm for supervised neural networks. In: Proceedings of the 2002 International Joint Conference on Neural Networks. Honolulu, HI: IEEE, 2002, 2: 1742-1747
|
[14]
|
Zheng J, Shen F R, Fan H J, Zhao J X. An online incremental learning support vector machine for large-scale data. Neural Computing and Applications, 2013, 22(5): 1023- 1035
|
[15]
|
Liu J, Lee J P Y, Li L J, Luo Z Q, Wong K M. Online clustering algorithms for radar emitter classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1185-1196
|
[16]
|
Seo S, Mohr J, Obermayer K. A new incremental pairwise clustering algorithm. In: Proceedings of the 2009 International Conference on Machine Learning and Applications. Miami Beach, FL: IEEE, 2009. 223-228
|
[17]
|
Xu Y, Shen F R, Zhao J X. An incremental learning vector quantization algorithm for pattern classification. Neural Computing and Applications, 2012, 21(6): 1205-1215
|
[18]
|
Calaa Y P, Reyes E G, Alzate M O, Duin R P W. Prototype selection for dissimilarity representation by a genetic algorithm. In: Proceedings of the 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2010. 177- 180
|