[1]
|
Rezapour E, Pettersen K Y, Liljeback P, Gravdahl J T. Differential geometric modelling and robust path following control of snake robots using sliding mode techniques. In:Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China:IEEE, 2014. 4532-4539
|
[2]
|
[2] Rezapour E, Hofmann A, Pettersen K Y. Maneuvering control of planar snake robots based on a simplified model. In:Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). Bali, Indonesia:IEEE, 2014. 548-555
|
[3]
|
[3] Porez M, Boyer F, Ljspeert A J. Improved lighthill fish swimming model for bio-inspired robots:modeling, computational aspects and experimental comparisons. The International Journal of Robotics Research, 2014, 31(10):1322-1341
|
[4]
|
Yang Gui-Zhi, Ma Shu-Gen, Li Bin, Wang Ming-Hui. A hierarchical connectionist central pattern generator model for controlling three-dimensional gaits of snake-like robots. Acta Automatica Sinica, 2013, 39(10):1611-1622(杨贵志, 马书根, 李斌, 王明辉. 面向蛇形机器人的三维步态控制的层次化联结中枢模式生成器模型. 自动化学报, 2013, 39(10):1611-1622)
|
[5]
|
[5] Mohammadi A, Rezapour E, Maggiore M, Pettrsen K Y. Direction following control of planar snake robots using virtual holonomic constraints. In:Proceedings of the 53rd Annual Conference on Decision and Control (CDC). Los Angeles, CA:IEEE, 2014. 3801-3808
|
[6]
|
[6] Tanaka M, Tanaka K. Control of a snake robot for ascending and descending steps. IEEE Transactions on Robotics, 2015, 31(2):511-520
|
[7]
|
[7] Murray R M, Sastry S S. Nonholonomic motion planning:steering using sinusoids. IEEE Transactions on Automatic Control, 1993, 38(5):700-716
|
[8]
|
[8] Leonard N E, Krishnaprasad P S. Motion control of drift-free, left-invariant systems on Lie groups. IEEE Transactions on Automatic Control, 1995, 40(9):1539-1554
|
[9]
|
[9] Lafferriere G, Sussmann H. Motion planning for controllable systems without drift. In:Proceedings of the 1991 IEEE International Conference on Robotics and Automation. Sacramento, CA:IEEE, 1991. 1148-1153
|
[10]
|
Morin P, Pomet J-B, Samson C. Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of Lie brackets in closed loop. SIAM Journal on Control and Optimization, 1999, 38(1):22-49
|
[11]
|
Prautsch P, Mita T. Control and analysis of the gait of snake robots. In:Proceedings of the 1999 IEEE International Conference on Control Applications. Kohala Coast, HI:IEEE, 1999. 502-507
|
[12]
|
Matsuno F, Mogi K. Redundancy controllable system and control of snake robots based on kinematic model. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, NSW:IEEE, 2000. 4791-4796
|
[13]
|
Matsuno F, Sato H. Trajectory tracking control of snake robots based on dynamic model. In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain:IEEE, 2005. 3029-3034
|
[14]
|
Ishikawa M. Iterative feedback control of snake-like robot based on principal fiber bundle modeling. International Journal of Advanced Mechatronic Systems, 2009, 1(3):175-182
|
[15]
|
Ishikawa M, Owaki K, Shinagawa M, Sygie T. Control of snake-like robot based on nonlinear controllability analysis. In:Proceedings of the 2010 IEEE International Conference on Control Applications (CCA). Yokohama, Japan:IEEE 2010. 1134-1139
|
[16]
|
Date H, Hoshi Y, Sampei M. Locomotion control of a snake-like robot based on dynamic manipulability. In:Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu, Japan:IEEE, 2000. 2236-2241
|
[17]
|
Date H, Hoshi Y, Sampei M, Nakaura S. Locomotion control of a snake robot with constraint force attenuation. In:Proceedings of the 2001 American Control Conference. Arlington, VA:IEEE, 2001. 113-118
|
[18]
|
Guo Xian, Wang Ming-Hui, Li Bin, Ma Shu-Gen, Wang Yue-Chao. Optimal torque control of a snake-like robot based on the minimum infinity norm. Robot, 2014, 36(1):8-13(郭宪, 王明辉, 李斌, 马书根, 王越超. 基于最小无穷范数的蛇形机器人最优力矩控制. 机器人, 2014, 36(1):8-13)
|
[19]
|
Guo X, Ma S G, Li B, Wang M H, Wang Y C. Modeling and optimal torque control of a snake-like robot based on the fiber bundle theory. Science China Information Sciences, 2015, 58(3):1-13
|
[20]
|
Maruskin J M, Bloch A M, Marsden J E, Zenkov D V. A fiber bundle approach to the transpositional relations in nonholonomic mechanics. Journal of Nonlinear Science, 2012, 22(4):431-461
|
[21]
|
Bloch A M, Marsden J E, Zenkov D V. Quasivelocities and symmetries in non-holonomic systems. Dynamical Systems, 2009, 24(2):187-222
|
[22]
|
Su C Y, Stepanenko Y. Robust motion/force control of mechanical systems with classical nonholonomic constraints. IEEE Transactions on Automatic Control, 1994, 39(3):609-614
|
[23]
|
Guo X, Ma S G, Li B, Wang M H. Locomotion control of a snake-like robot based on velocity disturbance. In:Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). Bali, Indonesia:IEEE, 2014. 582-587
|
[24]
|
Bullo F, Zefran M. On mechanical control systems with nonholonomic constraints and symmetries. Systems Control Letters, 2002, 45(2):133-143
|
[25]
|
Dragovic V, Gajic B. The Wagner curvature tensor in nonholonomic mechanics. Regular and Chaotic Dynamics, 2003, 8(1):105-123
|