2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

字典学习模型、算法及其应用研究进展

练秋生 石保顺 陈书贞

练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展. 自动化学报, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252
引用本文: 练秋生, 石保顺, 陈书贞. 字典学习模型、算法及其应用研究进展. 自动化学报, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252
LIAN Qiu-Sheng, SHI Bao-Shun, CHEN Shu-Zhen. Research Advances on Dictionary Learning Models, Algorithms and Applications. ACTA AUTOMATICA SINICA, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252
Citation: LIAN Qiu-Sheng, SHI Bao-Shun, CHEN Shu-Zhen. Research Advances on Dictionary Learning Models, Algorithms and Applications. ACTA AUTOMATICA SINICA, 2015, 41(2): 240-260. doi: 10.16383/j.aas.2015.c140252

字典学习模型、算法及其应用研究进展

doi: 10.16383/j.aas.2015.c140252
基金项目: 

国家自然科学基金(61471313),河北省自然科学基金(F2014203076)资助

详细信息
    作者简介:

    石保顺 燕山大学信息科学与工程学院博士研究生. 主要研究方向为图像处理,盲压缩感知, 字典学习.E-mail: shibaoshun1989@163.com

    陈书贞 燕山大学信息科学与工程学院副教授. 主要研究方向为图像处理, 压缩感知及生物识别.E-mail: chen sz818@163.com

    通讯作者:

    练秋生 燕山大学信息科学与工程学院教授. 主要研究方向为图像处理, 稀疏表示, 压缩感知及多尺度几何分析. 本文通信作者. E-mail: lianqs@ysu.edu.cn

Research Advances on Dictionary Learning Models, Algorithms and Applications

Funds: 

Supported by National Natural Science Foundation of China (61471313), and Natural Science Foundation of Hebei Province (F2014203076)

  • 摘要: 稀疏表示模型常利用训练样本学习过完备字典, 旨在获得信号的冗余稀疏表示. 设计简单、高效、通用性强的字典学习算法是目前的主要研究方向之一, 也是信息领域的研究热点. 基于综合稀疏模型的字典学习方法已经广泛应用于图像分类、图像去噪、图像超分辨率和压缩成像等领域. 近些年来, 解析稀疏模型、盲字典模型和信息复杂度模型等新模型的出现丰富了字典学习理论, 使得更广泛类型的信号能够被简单性描述. 本文详细介绍了综合字典、解析字典、盲字典和基于信息复杂度字典学习的基本模型及其算法, 阐述了字典学习的典型应用, 指出了字典学习的进一步研究方向.
  • [1] Hubel D H, Wiesel T N. Receptive fields of single neurons in the cat's striate cortex. Journal of Physiology, 1959, 148(3): 574-591
    [2] [2] Willshaw D J, Buneman O P, Longuet-Higgins H C. Non-holographic associative memory. Nature, 1969, 222(5197): 960-962
    [3] [3] Barlow H B. Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1972, 1(4): 371-394
    [4] [4] Oja E. Simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 1982, 15(3): 267-273
    [5] [5] Pham T T, Defigueiredo R J P. Maximum likelihood estimation of a class of non-Gaussian densities with application to L_p deconvolution. IEEE Transaction on Acoustics, Speech, and Signal Process, 1989, 37(1): 73-82
    [6] [6] Jutten C, Herault J. Blind separation of sources, Part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991, 24(1): 1-10
    [7] [7] Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415
    [8] [8] Chen S S, Donoho D L. Saunders M A. Atomic Decomposition by Basis Pursuit. Technical Report, Stanford University, Britain, 1995.
    [9] [9] Olshausen B A, Field D J. Emergency of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609
    [10] Olshausen B A, Field D J. Natural image statistics and efficient coding. Network Computation in Neural Systems, 1996, 7(2): 333-339
    [11] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision Research, 1997, 37(23): 3311-3325
    [12] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306
    [13] Candes E J, Tao T. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425
    [14] Liu Fang, Wu Jiao, Yang Shu-Yuan, Jiao Li-Cheng. Research advances on structured compressive sensing. Acta Automatica Sinica, 2013, 39(12): 1980-1995 (刘芳, 吴娇, 杨淑媛, 焦李成. 结构化压缩感知进展. 自动化学报, 2013, 39(12): 1980-1995)
    [15] Mallat S. Geometrical grouplets. Applied and Computational Harmonic Analysis, 2009, 26(2): 161-180
    [16] Yaghoobi M, Daudet L, Davies M E. Parametric dictionary design for sparse coding. IEEE Transactions on Signal Processing, 2009, 57(12): 4800-4810
    [17] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Signal Processing, 2006, 15(12): 3736-3745
    [18] Liu J J, Ma X H. An improved image inpainting algorithm based on multi-scale dictionary learning in wavelet domain. In: Proceedings of the 2013 International Conference on Signal Processing, Communication and Computing. Kunming, China: IEEE, 2013. 1-5
    [19] Liu X M, Zhai D M, Zhao D B, Gao W. Image super-resolution via hierarchical and collaborative sparse representation. In: Proceedings of the 2013 Data Compression Conference. Snowbird, USA: IEEE, 2013. 93-102
    [20] Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
    [21] Yaghoobi M, Blumensath T, Davies M E. Dictionary learning for sparse approximations with the majorization method. IEEE Transactions on Signal Processing, 2009, 57(6): 2178-2191
    [22] Mairal J, Bach F, Ponce J, Sapiro G. Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research, 2010, 11(1): 19-60
    [23] Zelnik-Manor L, Rosenblum K, Eldar Y C. Dictionary optimization for block-sparse representations. IEEE Transactions on Signal Processing, 2012, 60(5): 2386-2395
    [24] Elad M, Milanfar P, Rubinstein R. Analysis versus synthesis in signal priors. Inverse Problems, 2007, 23(3): 947-968
    [25] Rubinstein R, Bruckstein A M, Elad M. Dictionaries for sparse representation modeling. Proceedings of the IEEE, 2010, 98(6): 1045-1057
    [26] Nam S, Davies M E, Elad M, Gribonval R. The cosparse analysis model and algorithms. Applied and Computational Harmonic Analysis, 2013, 34(1): 30-56
    [27] Gleichman S, Eldar Y C. Blind compressed sensing. IEEE Transactions on Information Theory, 2011, 57(10): 6958-6975
    [28] Jalali S, Maleki A. Minimum complexity pursuit. In: Proceedings of the 49th Annual Allerton Conference on Communication, Control, and Computing. Monticello, IL: IEEE, 2011. 1764-1770
    [29] Ramirez I, Sapiro G. An MDL framework for sparse coding and dictionary learning. IEEE Transactions on Signal Processing, 2012, 60(6): 2913-2927
    [30] Donoho D L, Tsaig Y, Drori I, Starck J L. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121
    [31] Shi Guang-Ming, Liu Dan-Hua, Gao Da-Hua, Liu Zhe, Lin Jie, Wang Liang-Jun. Advances in theory and application of compressed sensing. Acta Electronica Sinica, 2009, 37(5): 1070-1081 (石光明, 刘丹华, 高大化, 刘哲, 林杰, 王良君. 压缩感知理论及其研究进展. 电子学报, 2009, 37(5): 1070-1081)
    [32] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
    [33] Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal. IEEE Transaction on Information Theory, 2009, 55(5): 2230-2249
    [34] Ambat S K, Chatterjee S, Hari K V S. Fusion of algorithms for compressed sensing. IEEE Transactions on Signal Processing, 2013, 61(14): 3699-3704
    [35] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61
    [36] Tibshirani R. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society Series B, 1996, 58(1): 267-288
    [37] Lewicki M S, Olshausen B A. Probabilistic framework for the adaptation and comparison of image codes. Journal of the Optical Society of America a Optics Image Science and Vision, 1999, 16(7): 1587-1601
    [38] Kreutz-Delgado K, Murray J F, Rao B D, Engan K, Lee T W, Sejnowski T J. Dictionary learning algorithms for sparse representation. Neural Computation, 2003, 15(2): 349-396
    [39] Mailh B, Plumbley M D. Dictionary learning with large step gradient descent for sparse representations. In: Proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation. Berlin, Heidelberg: Springer, 2012. 231-238
    [40] Lee H, Battle A, Raina R, Ng A Y. Efficient sparse coding algorithms. In: Proceedings of the 20th Annual Conference on Neural Information Processing Systems. Columbia, Canada: IEEE, 2006. 801-808
    [41] Engan K, Aase S O, Husoy J H. Method of optimal directions for frame design. In: Proceedings of the 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Phoenix AZ: IEEE, 1999. 2443-2446
    [42] Smith L N, Elad M. Improving dictionary learning: multiple dictionary updates and coefficient reuse. IEEE Signal Processing Letters, 2013, 20(1): 79-82
    [43] Rubinstein R, Zibulevsky M, Elad M. Efficient Implementation of the K-SVD Algorithm Using Batch Orthogonal Matching Pursuit, Technical Report, Technion University, Israel, 2008.
    [44] Sadeghi M, Babaie-Zadeh M, Jutten C. Learning overcomplete dictionaries based on parallel atom-updating. In: Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing (MLSP). Southampton, UK: IEEE, 2013. 1-5
    [45] Dai W, Xu T, Wang W. Simultaneous codeword optimization (SimCO) for dictionary update and learning. IEEE Transactions on Signal Processing, 2012, 60(12): 6340-6353
    [46] Rusu C, Dumitrescu B. Stagewise K-SVD to design efficient dictionaries for sparse representations. IEEE Signal Processing Letters, 2012, 19(10): 631-634
    [47] Lu C W, Shi J P, Jia J Y. Scale adaptive dictionary learning. IEEE Transactions on Image Processing, 2014, 23(2): 837-847
    [48] Sahoo S K, Makur A. Dictionary training for sparse representation as generalization of K-means clustering. IEEE Signal Processing Letters, 2013, 20(6): 587-590
    [49] Sadeghi M, Babaie-Zadeh M, Jutten C. Dictionary learning for sparse representation: a novel approach. IEEE Signal Processing Letters, 2013, 20(12): 1195-1198
    [50] Rakotomamonjy A. Applying alternating direction method of multipliers for constrained dictionary learning. Neurocomputing, 2013, 106: 126-136
    [51] Rakotomamonjy A. Direct optimization of the dictionary learning problem. IEEE Transactions on Signal Processing, 2013, 61(22): 5495-5506
    [52] Sigg C D, Dikk T, Buhmann J M. Learning dictionaries with bounded self-coherence. IEEE Signal Processing Letters, 2012, 19(12): 861-864
    [53] Mailhe B, Barchiesi D, Plumbley M D. INK-SVD: learning incoherent dictionaries for sparse representations. In: Proceedings of the 2012 International Conference on Acoustics, Speech and Signal Processing. Kyoto, Japan: IEEE, 2012. 3573-3576
    [54] Barchiesi D, Plumbley M D. Learning incoherent dictionaries for sparse approximation using iterative projections and rotations. IEEE Transactions on Signal Processing, 2013, 61(8): 2055-2065
    [55] Skretting K, Engan K. Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing, 2010, 58(4): 2121-2130
    [56] Labusch K, Barth E, Martinetz T. Robust and fast learning of sparse codes with stochastic gradient descent. IEEE Transactions on Selected Topics in Signal Processing, 2011, 5(5): 1048-1060
    [57] Sendur L, Selesnick I W. Bivariate shrinkage functions for wavelet based denoising exploiting interscale dependency. IEEE Transactions on Signal Processing, 2002, 50(11): 2744-2756
    [58] Lesage S, Gribonval R, Bimbot F, Benaroya L. Learning unions of orthonormal bases with thresholded singular value decomposition. In: Proceedings of the 2005 International Conference on Acoustics, Speech and Signal Processing. Philadelphia, PA: IEEE, 2005. 293- 296
    [59] Vidal R, Ma Y, Sastry S. Generalized principal component analysis (GPCA). IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959
    [60] Bengio S, Pereira F, Singer Y, Strelow D. Group sparse coding. In: Proceedings of the 23rd Annual Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada: IEEE, 2009. 82-89
    [61] Szabo Z, Poczos B, Lorincz A. Online group-structured dictionary learning. In: Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI: IEEE, 2011. 2865-2872
    [62] Jenatton R, Mairal J, Obozinski G, Bach F. Proximal methods for hierarchical sparse coding. Journal of Machine Learning Research, 2011, 12(7): 2297-2334
    [63] Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for image and video restoration. Multiscale Modeling and Simulation, 2008, 7(1): 214-241
    [64] Ophir B, Lustig M, Elad M. Multi-scale dictionary learning using wavelets. IEEE Journal of Selected Topics in Signal Processing. 2011, 5(5): 1014-1024
    [65] Thiagarajan J J, Ramamurthy K N, Spanias A. Multilevel dictionary learning for sparse representation of images. In: Proceedings of the 2011 IEEE Digital Signal Processing Workshop and Signal Processing Education Workshop. Sedona, AZ: IEEE, 2011. 271-276
    [66] Rubinstein R, Zibulevsky M, Elad M. Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Transactions on Signal Processing, 2010, 58(3): 1553-1564
    [67] Yaghoobi M, Davies M E. Compressible dictionary learning for fast sparse approximations. In: Proceedings of the 15th IEEE/SP Workshop on Statistical Signal Processing. Cardiff: IEEE, 2009. 662-665
    [68] Hawe S, Seibert M, Kleinsteuber M. Separable dictionary learning. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2013. 438-445
    [69] Jost P, Vandergheynst P, Lesage S, Gribonval R. MoTIF: an efficient algorithm for learning translation invariant dictionaries. In: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France: IEEE, 2006. 5
    [70] Aharon M, Elad M. Sparse and redundant modeling of image content using an image-signature-dictionary. SIAM Journal on Imaging Sciences, 2008, 1(3): 228-247
    [71] Rusu C, Dumitrescu B, Tsaftaris S A. Explicit shift-invariant dictionary learning. IEEE Signal Processing Letters, 2014, 21(1): 6-9
    [72] Pope G, Aubel C, Studer C. Learning phase-invariant dictionaries. In: Proceedings of the 2013 International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 5979-5983
    [73] Zhou M, Yang H, Paisley J, Ren L. Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Transactions on Image Processing, 2012, 21(1): 130-144
    [74] Ravishankar S, Bresler Y. Learning sparsifying transform. IEEE Transactions on Signal Processing, 2013, 61(5): 1072-1086
    [75] Rubinstein R, Peleg T, Elad M. Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model. IEEE Transactions on Signal Processing, 2013, 61(3): 661-677
    [76] Chen Y J, Ranftl R, Pock T. Insights into analysis operator learning: from patch-based sparse models to higher order MRFs. IEEE Transactions on Image Processing, 2014, 23(3): 1060-1072
    [77] Zhang Y, Wang H L, Yu T L. Subset pursuit for analysis dictionary learning. In: Proceedings of the 21th European Signal Processing Conference. Marrakech, Morocco, 2013. 1-5
    [78] Zhang Y, Wang H L, Wang W W, Sanei S. K-plane clustering algorithm for analysis dictionary learning. In: Proceedings of the 2013 IEEE International Workshop on Machine Learning for Signal Processing. Southampton, Britain: IEEE, 2013. 1-4
    [79] Dong J, Wang W W, Dai W. Analysis SimCO: a new algorithm for analysis dictionary learning. In: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Florence, Italy: IEEE, 2014. 7193-7197
    [80] Yaghoobi M, Nam S, Gribonval R, Davies M E. Constrained overcomplete analysis operator learning for cospaese signal modelling. IEEE Transactions on Signal Processing, 2013, 61(9): 2141-2355
    [81] Yaghoobi M, Davies M E. Relaxed analysis operator learning. In: Proceedings of the 2012 NIPS, Workshop on Analysis Operator Learning vs. Dictionary Learning: Fraternal Twins in Sparse Modeling. Lake Tahoe, USA: IEEE, 2012.
    [82] Hawe S, Kleinsteuber M, Diepold K. Analysis operator learning and its application to image reconstruction. IEEE Transactions on Image Processing, 2013, 22(6): 2138-2150
    [83] Ravishankar S, Bresler Y. Sparsifying transform learning for compressed sensing MRI. In: Proceedings of the 10th International Symposium on Biomedical Imaging. San Francisco, CA: IEEE, 2013. 17-20
    [84] Ravishankar S, Bresler Y. Closed-form solutions within sparsifying transform learning. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada: IEEE, 2013. 5378-5382
    [85] Ravishankar S, Bresler Y. Learning sparsifying transforms for image processing. In: Proceedings of the 2012 19th IEEE International Conference on Image Processing. Orlando, USA: IEEE, 2012. 681-684
    [86] Eksioglu E M, Bayir O. K-SVD meets transform learning: transform K-SVD. IEEE Signal Processing Letters, 2014, 21(3): 347-351
    [87] Qi N,Shi Y H, Sun X Y, Wang J D, Ding W P. Two dimensional analysis sparse model. In: Proceedings of the 20th International Conference on Imaging Processing. Melbourne, Australia: IEEE, 2013. 310-314
    [88] Seibert M, Wrmann J, Gribonval R, Kleinsteuber M. Separable cosparse analysis operator learning. In: Proceedings of the 22nd European Signal Processing Conference (EUSIPCO). Lisbonne, Portuga, 2014.
    [89] Ravishankar S, Bresler Y. Learning doubly sparsifying transforms for images. IEEE Transactions on Image Processing, 2013, 22(12): 4598-4612
    [90] Anaraki P F, Hughes S M. Compressive K-SVD. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 2013. 5469-5473
    [91] Aghagolzadeh M, Radha H. Compressive dictionary learning for image recovery. In: Proceedings of the 19th IEEE International Conference on Image Processing. Orlando, USA: IEEE, 2012. 661-664
    [92] Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041
    [93] Zhang J, Zhao C, Zhao D B, Gao W. Image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. Signal Processing, 2014, 103: 114-126
    [94] Goldstein T, Osher S. The split Bregman algorithm for L1 regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343
    [95] Chen C, Tramel E W, Fowler J E. Compressed-sensing recovery of images and video using multi-hypothesis predictions. In: Proceedings of the 45th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, USA: IEEE, 2011. 1193-1198
    [96] Wormann J, Hawe S, Kleinsterber M. Analysis based blind compressive sensing. IEEE Signal Processing Letters, 2013, 20(5): 491-494
    [97] Jalali S, Maleki A, Baraniuk R G. Minimum complexity pursuit for universal compressed sensing. IEEE Transactions on Information Theory, 2014, 60(4): 2253-2268
    [98] Kolmogorov A N. Logical basis for information theory and probability theory. IEEE Transactions on Information Theory, 1968, 14(5): 662-664
    [99] Rissanen J. Modeling by shortest data description. Automatica, 1978, 14(5): 465-471
    [100] Grunwald P D. The Minimum Description Length Principle. Cambridge: UK Press, 2007.
    [101] Roos T, Myllymaki P, Rissanrien J. MDL denoising revisited. IEEE Transactions on Signal Processing, 2009, 57(9): 3347-3360
    [102] Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Transactions on Image Processing, 2000, 9(9): 1532-1546
    [103] Knaus C, Zwicker M. Dual-domain image denoising. In: Proceedings of the 2013 20th IEEE International Conference on Image Processing. Melbourne, Australia: IEEE, 2013. 440-444
    [104] Beckouche S, Starck J L, Fadili J. Astronomical image denoising using dictionary learning. Astronomy Astrophysics, 2013, 556(6): 14, DOI: 10.1051/0004-6361/ 201220752
    [105] Li S T, Fang L Y, Yin H T. An efficient dictionary learning algorithm and its application to 3-D medical image denoising. IEEE Transactions on Biomedical Engineering, 2012, 59(2): 417-427
    [106] Lian Qiu-Sheng, Zhang Jun-Qin, Chen Shu-Zhen. Single image super-resolution algorithm based on two-stage and multi-frequency -band dictionaries. Acta Automatica Sinica, 2013, 39(8): 1310-1320 (练秋生, 张钧芹, 陈书贞. 基于两级字典与分频带字典的图像超分辨率算法. 自动化学报, 2013, 39(3): 1310-1320)
    [107] Yang J C, Wright J, Huang T, Ma Y. Image super-resolution as sparse representation of raw image patches. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
    [108] Yang J C, Wright J, Huang T S, Ma Y. Image super-resolution via sparse representation. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873
    [109] Yang J C, Wang W Z, Lin Z, Cohen S, Huang T. Coupled dictionary training for image super-resolution. IEEE Transaction on Image Processing, 2012, 21(8): 3467-3478
    [110] Lu X Q, Yuan Y, Yan P K. Alternatively constrained dictionary learning for image superresolution. IEEE Transactions on Cybernetics, 2014, 44(3): 366-377
    [111] Wang S L, Zhang L, Liang Y, Pan Q. Semi-coupled dictionary learning with applications to image super-resolution and photo-sketch synthesis. In: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 2216-2223
    [112] Lian Qiu-Sheng, Chen Shu-Zhen. Image reconstruction for compressed sensing based on the combined sparse image representation. Acta Automatica Sinica, 2010, 36(3): 385-391 (练秋生, 陈书贞. 基于混合基稀疏图像表示的压缩传感图像重构. 自动化学报, 2010, 36(3): 385-391)
    [113] Rajwade A, Kittle D, Tsai T H, Brady D, Carin L. Codes hyperspectral imaging and blind compressive sensing. SIAM Journal on Imaging Sciences, 2013, 6(2): 782-812
    [114] Lingala S G, Jacob M. A blind compressive sensing frame work for accelerated dynamic MRI. In: Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI). Barcelona, Spain: IEEE, 2012. 1060-1063
    [115] Huang J Z, Zhang S T, Metaxas D. Efficient MR image reconstruction for compressed MR imaging. Medical Image Analysis, 2011, 15(5): 670-679
    [116] Wright J, Yang A, Ganesh A, Sastry S, Ma Y. Roubust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227
    [117] Yang M, Zhang L, Yang J, Zhang D. Metaface learning for sparse representation based face recognition. In: Proceedings of the 17th IEEE International Conference on Image Processing. Hong Kong, China: IEEE, 2010. 1601-1604
    [118] Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 3501-3508
    [119] Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(4): 791-804
    [120] Zhang Q, Li B Q. Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2691-2698
    [121] Yang M, Zhan D, Feng X C, Zhang D. Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011. 543-550
    [122] Nguyen H V, Patel V M, Nasrabadi N M, Chellapa R. Kernel dictionary learning. In: Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Signal Processing Kyoto, Japan: IEEE, 2012. 2021-2024
    [123] Duarte-Carvejalino J M, Sapiro G. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, 18(7): 1395-1408
    [124] Chen W, Rodrigues M R D. Dictionary learning with optimized projection design for compressive sensing applications. IEEE Signal Processing Letters, 2013, 20(10): 992-995
    [125] Zhang Hai, Wang Yao, Chang Xiang-Yu, Xu Zong-Ben. L1/2 regularization. Science China: Information Sciences, 2010, 40(3): 412-422 (张海, 王尧, 常象宇, 徐宗本. L1/2 正则化. 中国科学: 信息科学, 2010, 40(3): 412-422)
    [126] Xu Z B, Chang X Y, Xu F M, Zhang H. L1/2 regularization: a thresholding representation theory and a fast solver. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013-1027
    [127] Zuo W M, Meng D Y, Zhang L, Feng X C, Zhang D. A generalized iterated shrinkage algorithm for non-convex sparse coding. In: Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013. 217-244
    [128] Candes E J, Plan Y. Matrix completion with noise. Proceedings of the IEEE, 2010, 98(6): 925-936
    [129] Cands E J, Recht B. Simple bounds for recovering low-complexity models. Mathematical Programming, 2013, 141(1-2): 577-589
    [130] Peng Yi-Gang, Suo Jin-Li, Dai Qiong-Hai, Xu Wen-Li. From compressed sensing to low-rank matrix recovery: theory and applications. Acta Automatica Sinica, 2013, 39(7): 981-994 (彭义刚, 索津莉, 戴琼海, 徐文立. 从压缩传感到低秩矩阵恢复: 理论与应用. 自动化学报, 2013, 39(7): 981-994)
    [131] Elad M. Sparse and redundant representation modeling-what next? IEEE Signal Processing Letters, 2012, 19(12): 922-928
    [132] Bao C L, Ji H, Quan Y H, Shen Z W. L0 norm based dictionary learning by proximal methods with global convergence. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland, USA: IEEE, 2013. 3858-3865
  • 期刊类型引用(122)

    1. 李雨亭,韦中,陈靖,陈文杰,袁茼珊,王启璇,蒋焱,丁宇. 激光诱导击穿光谱(LIBS)结合字典学习对气溶胶光谱数据筛选方法的研究. 中国无机分析化学. 2024(02): 176-182 . 百度学术
    2. 袁博,葛少云,刘洪. 压缩感知在非侵入式负荷监测中的应用展望. 中国电机工程学报. 2024(16): 6416-6432 . 百度学术
    3. 范利菊. 基于稀疏编码的数字电视信号压缩与传输方法研究. 电视技术. 2024(10): 14-16 . 百度学术
    4. 宋艳,刘佳. 字典学习算法概述及应用. 网络安全技术与应用. 2023(02): 29-31 . 百度学术
    5. 张光雅,李江坤,李兵海,张翔,张伟,武雷超. K-SVD字典在航空伽马谱数据降噪中的应用研究. 核电子学与探测技术. 2023(01): 56-63 . 百度学术
    6. 徐崇钧,于鹤洋,朱琪,耿光超,江全元. 基于多元特征分析的居民非侵入式相似电器辨识算法. 电力系统保护与控制. 2023(13): 111-121 . 百度学术
    7. 何家辉,程志君,郭波. 联合字典学习与OCSVM的遥测数据异常检测方法. 航空学报. 2023(13): 207-219 . 百度学术
    8. 周子翔,吴娟,袁成,白敏,桂志先. 一种新的K-SVD字典学习地震数据去噪方法. 石油地球物理勘探. 2023(05): 1072-1083 . 百度学术
    9. 李奇泽. 基于区域级隶属度函数的图像分割评估分析. 电子产品世界. 2023(10): 54-57 . 百度学术
    10. 程兴国,翁璞. 基于自学习字典的盲提取方法在滚动轴承多故障诊断中的应用. 机械传动. 2022(02): 149-154 . 百度学术
    11. 封常青,李予国,吴云具,段双敏. 利用K-SVD字典学习算法压制海洋大地电磁噪声. 地球物理学报. 2022(05): 1853-1865 . 百度学术
    12. 魏爽,王晓楠,杨璟安. 基于动态字典学习的欠定盲语音重构算法. 计算机工程与设计. 2022(05): 1351-1357 . 百度学术
    13. 李波,管彦允,龚维印,韦旭勤,薛端. 基于密度的K-means初始聚类中心点选取算法. 绥化学院学报. 2022(06): 148-151 . 百度学术
    14. 王莲子,李钟晓,陈倩倩,庄晓东. 基于信号子空间低维表征的快速字典学习算法. 传感器与微系统. 2022(08): 144-147+152 . 百度学术
    15. 周俊捷,吴相伶,李文杰,李静和. 基于分块字典学习理论的地震数据去噪. CT理论与应用研究. 2022(05): 557-566 . 百度学术
    16. 程德强,陈杰,寇旗旗,聂帅杰,张剑英. 融合层次特征和注意力机制的轻量化矿井图像超分辨率重建方法. 仪器仪表学报. 2022(08): 73-84 . 百度学术
    17. 张宇博,郝治国,林泽暄,杨松浩,刘志远,于晓军. 基于深度字典学习的输电线路故障分类方法. 电力自动化设备. 2022(11): 159-166 . 百度学术
    18. 王力,张亦弛,郝建新. 基于卷积融合字典的电路板红外图像去噪研究. 激光与红外. 2022(12): 1867-1875 . 百度学术
    19. 刘高辉,任倩楠. 基于学习字典和符号同步信息的OFDM信号带内多路单载波通信干扰抑制方法. 信号处理. 2021(05): 788-795 . 百度学术
    20. 姚瑶,李圣辰,邵曦. 基于字典学习的无监督机器异常声检测. 复旦学报(自然科学版). 2021(03): 303-308 . 百度学术
    21. 邬东辉,顾幸生. 基于自适应稀疏表示和保局投影的工业故障检测. 华东理工大学学报(自然科学版). 2021(04): 455-464 . 百度学术
    22. 李娟娟. 小样本字典学习的兰姆波模态识别方法. 应用声学. 2021(05): 767-773 . 百度学术
    23. 刘苗苗,蒋宇帆,邢钉凡. 自适应核协同表示在SAR目标识别中的应用. 半导体光电. 2021(06): 891-896 . 百度学术
    24. 杨冠仪,於志勇,郭文忠,黄昉菀. 基于稀疏表示的时间序列最近邻分类. 福州大学学报(自然科学版). 2020(02): 152-159 . 百度学术
    25. 郭俊锋,李育亮. 基于学习字典的机器人图像稀疏表示方法. 自动化学报. 2020(04): 820-830 . 本站查看
    26. 张建峰,沈军,张昊平. 自适应分裂Bregman迭代的编码孔径光谱图像重构方法. 计算机应用与软件. 2020(05): 249-255 . 百度学术
    27. 曹义亲,杨世超,谢舒慧. 基于NSST的PCNN-SR卫星遥感图像融合方法. 航天控制. 2020(02): 44-50 . 百度学术
    28. 李帅永,毛维培,程振华,韩明秀,夏传强. 基于VMD和K-SVD字典学习的供水管道泄漏振动信号压缩感知方法. 仪器仪表学报. 2020(03): 49-60 . 百度学术
    29. 袁培森,李润隆,任守纲,顾兴健,徐焕良. 表示学习技术研究进展及其在植物表型中应用分析. 农业机械学报. 2020(06): 1-14 . 百度学术
    30. 柏凯,李伟,刘晓培. 字典神经网络方法快速湍流烟雾合成. 中国图象图形学报. 2020(06): 1235-1244 . 百度学术
    31. 董银丽,任翠萍. 超分辨率图像重建解析. 电脑知识与技术. 2020(17): 188-190 . 百度学术
    32. 杜秀丽,司增辉,左思铭,邱少明. 基于截断核范数低秩分解的自适应字典学习算法. 数据采集与处理. 2020(04): 603-612 . 百度学术
    33. 魏永合,李宏林,聂晨. 基于EEMD和低相干K-SVD的齿轮故障诊断方法研究. 组合机床与自动化加工技术. 2020(08): 12-15+20 . 百度学术
    34. 谢海平,谢凯利,杨海涛. 图像超分辨率方法研究进展. 计算机工程与应用. 2020(19): 34-41 . 百度学术
    35. 宗春梅,张月琴,曹建芳,赵青杉. 基于深度先验及非局部相似性的压缩感知核磁共振成像. 计算机应用. 2020(10): 3054-3059 . 百度学术
    36. 张风彦. 基于自适应隶属度的彩色图像分割算法性能评价. 计算机与数字工程. 2020(09): 2270-2274 . 百度学术
    37. 李杰,李响,许元铭,杨绍杰,孙可意. 工业人工智能及应用研究现状及展望. 自动化学报. 2020(10): 2031-2044 . 本站查看
    38. 张一鸣,陈培培,王汉谱,徐将,欧先锋,徐智. 一种基于光谱角字典构造稀疏表达的高光谱目标检测方法. 成都工业学院学报. 2020(04): 7-12 . 百度学术
    39. 陈永,陶美风,艾亚鹏,陈锦. 基于Gabor变换和组稀疏表示的敦煌壁画修复算法. 激光与光电子学进展. 2020(22): 175-184 . 百度学术
    40. 牛彪,李海洋. 低字典相干性K-SVD算法研究. 计算机与数字工程. 2019(01): 92-98 . 百度学术
    41. 王茁,党姜婷,李育亮,杨海鱼,杨文. 图像压缩感知理论研究综述. 机械制造与自动化. 2019(01): 112-116 . 百度学术
    42. 俞国庆,贾瑞生,孙圆圆,侯文龙. 基于超完备字典学习的缺失地震数据重构方法. 地球物理学进展. 2019(01): 229-235 . 百度学术
    43. 郭俊锋,李育亮,王茁. 一种基于过完备冗余字典的图像去噪方法. 机械设计与制造工程. 2019(02): 103-106 . 百度学术
    44. 韩瑞瑞,张尤赛. 基于PCA/ICA的人脸识别片上系统的设计与实现. 自动化技术与应用. 2019(02): 129-134 . 百度学术
    45. 胡春海,马双娜,李永发. 基于波原子稀疏优化与组稀疏表示的压缩感知算法. 燕山大学学报. 2019(01): 18-24 . 百度学术
    46. 郭小萍,刘诗洋,李元. 基于稀疏残差距离的多工况过程故障检测方法研究. 自动化学报. 2019(03): 617-625 . 本站查看
    47. 张凤莉. 基于局部一致性和相干性字典学习的人脸识别. 电子设计工程. 2019(09): 127-130+135 . 百度学术
    48. 杜秀丽,左思铭,邱少明. 基于图像灰度熵的自适应字典学习算法. 计算机科学. 2019(05): 266-271 . 百度学术
    49. 陈欢,陈清江. 结合残差学习的尺度感知图像降噪算法. 激光与光电子学进展. 2019(09): 109-115 . 百度学术
    50. 刘艳,钱阳,李雷. 一种新型的基于KCS算法在图像重构中的应用. 计算机技术与发展. 2019(06): 195-199 . 百度学术
    51. 张二华,王明合,唐振民. 加性噪声条件下鲁棒说话人确认. 电子学报. 2019(06): 1244-1250 . 百度学术
    52. 宗静静,邱天爽. 稀疏表示中稀疏系数的l_1范数的特性分析. 系统工程与电子技术. 2019(12): 2692-2696 . 百度学术
    53. 邹雄斌. 基于局部敏感自调制字典的压缩感知矿井图像重构. 电子技术与软件工程. 2019(23): 64-66 . 百度学术
    54. 吴笑天,王星,王志鹏,周一鹏,陈游. 基于Fisher判别字典学习的辐射源调制特征识别. 兵工学报. 2018(03): 553-559 . 百度学术
    55. 于清江,刘康,史明洁. 压缩感知中块结构字典学习方法改进. 传感器与微系统. 2018(07): 59-62 . 百度学术
    56. 程春燕. 基于字典学习的图像去噪研究. 电脑知识与技术. 2018(02): 164-165 . 百度学术
    57. 汤井田,李广,周聪,任政勇,肖晓,刘子杰. 基于字典学习的音频大地电磁数据处理. 地球物理学报. 2018(09): 3835-3850 . 百度学术
    58. 胡燕,李开宇,崔益峰. 基于Fisher判别的结构化低秩字典学习算法研究. 电子测量技术. 2018(11): 112-116 . 百度学术
    59. 夏瑜,吴小俊,周立凡,李菊. 基于多层字典的自重构目标跟踪算法. 光电子·激光. 2018(01): 77-84 . 百度学术
    60. 赵建敏,芦建文. 基于字典学习的马铃薯叶片病害图像识别算法. 河南农业科学. 2018(04): 154-160 . 百度学术
    61. 苏锦程,胡勇,巩彩兰. 一种混合红外云图超分辨率重建算法. 红外. 2018(08): 34-39 . 百度学术
    62. 尹立敏,齐敏,雷钢,吕莉莉,孙笑天,杨镇达. 基于超完备字典的压缩感知电能质量数据重构. 电力系统保护与控制. 2018(08): 88-94 . 百度学术
    63. 杨培,高雷阜,王江,訾玲玲. 基于稀疏表示与字典学习的彩色图像去噪算法. 计算机工程与科学. 2018(05): 842-848 . 百度学术
    64. 王丽芳,董侠,秦品乐,高媛. 基于自适应联合字典学习的脑部多模态图像融合方法. 计算机应用. 2018(04): 1134-1140 . 百度学术
    65. 姚涛,孔祥维,付海燕,TIAN Qi. 基于映射字典学习的跨模态哈希检索. 自动化学报. 2018(08): 1475-1485 . 本站查看
    66. 刘坚桥,唐加山. 基于正则化模型的K-SVD算法及其应用. 软件导刊. 2018(08): 114-117 . 百度学术
    67. 徐岩,米强,刘斌,徐运杰. 基于字典学习的煤与矸石图像特征识别方法. 山东科技大学学报(自然科学版). 2018(03): 66-72 . 百度学术
    68. 王轩,孙权森,刘佶鑫. 基于典型地物字典学习的遥感图像分块重构方法. 数据采集与处理. 2018(03): 461-468 . 百度学术
    69. 禹青,陈恳,李斐,李萌. 基于解析字典的人群异常行为检测. 数据通信. 2018(04): 14-19 . 百度学术
    70. 冯宗伟,种衍文,郑炜玲,潘少明. 基于解析字典的图像压缩方法. 武汉大学学报(信息科学版). 2018(02): 262-267+274 . 百度学术
    71. 黎明,彭秀姣,王艳. 基于改进的字典学习与稀疏表示的人脸表情识别. 系统仿真学报. 2018(01): 28-35+44 . 百度学术
    72. 邓道举,李秀梅. 基于KPCA和投影字典对学习的人脸识别算法. 计算机系统应用. 2018(05): 145-150 . 百度学术
    73. 张海涛,赵燚. 改进超分辨率卷积神经网络和字典学习的图像超分辨率重构算法. 小型微型计算机系统. 2018(09): 2090-2097 . 百度学术
    74. 李开宇,胡燕,崔益峰,王平,徐贵力. 结构化低秩字典学习的人脸识别. 中国图象图形学报. 2018(08): 1154-1162 . 百度学术
    75. 孙大为,王仕成,杨东方,刘源,李永飞. 基于监督字典学习的核稀疏表示的目标识别算法(英文). 中国惯性技术学报. 2018(03): 330-337 . 百度学术
    76. 赵丽玲,孙权森,张泽林. 基于深度学习特征字典的单帧图像超分辨率重建. 数据采集与处理. 2018(04): 740-750 . 百度学术
    77. 禹青,陈恳,李萌,李斐. 一种基于局部拓扑与l_(1/2)范数的解析字典分类的人群事件检测. 电信科学. 2018(10): 65-71 . 百度学术
    78. 刘杰平,杨朝煜,陈栋,杨业长,马丽红. 结合系数重用正交匹配追踪的字典学习算法. 华南理工大学学报(自然科学版). 2018(08): 52-56+63 . 百度学术
    79. 练秋生,高丽萍,石保顺,陈书贞. 基于正交字典学习的多像面相位恢复算法. 计算机学报. 2018(11): 2509-2523 . 百度学术
    80. 黄宏图,毕笃彦,侯志强,胡长城,高山,查宇飞,库涛. 基于稀疏表示的视频目标跟踪研究综述. 自动化学报. 2018(10): 1747-1763 . 本站查看
    81. 伍云霞,孟祥龙. 局部约束的自学习煤岩识别方法. 煤炭学报. 2018(09): 2639-2646 . 百度学术
    82. 刘高辉,周熊. 复杂电磁环境下基于信号稀疏表示的干扰抑制与通信信号重构方法. 计算机系统应用. 2018(11): 149-154 . 百度学术
    83. 殷晓辉. 基于改进K-SVD算法的傅里叶叠层成像识别技术研究. 生命科学仪器. 2018(06): 46-49+36 . 百度学术
    84. 叶娅兰,何文文,程云飞,侯孟书,李云霞. 面向压缩感知的基于相关性字典学习算法. 电子科技大学学报. 2017(05): 703-708 . 百度学术
    85. 王爱齐,徐坤,宋爱民. 基于局部自相似的字典学习图像去噪方法. 大连交通大学学报. 2017(04): 192-195 . 百度学术
    86. 郭继昌,张帆,王楠. 基于Fisher约束和字典对的图像分类. 电子与信息学报. 2017(02): 270-277 . 百度学术
    87. 杨颖颖. 低相关性压缩感知表示基学习算法. 淮北师范大学学报(自然科学版). 2017(04): 44-48 . 百度学术
    88. 殷鑫华,戴文战,李俊峰. 改进的ROMP算法及其在医学图像融合中的应用. 光电子·激光. 2017(11): 1273-1284 . 百度学术
    89. 何芳,王榕,于强,贾维敏. 加权空谱局部保持投影的高光谱图像特征提取. 光学精密工程. 2017(01): 263-273 . 百度学术
    90. 高红霞,谢剑河,曾润浩,吴梓灵,马鸽. 数据保真项与稀疏约束项相融合的稀疏重建. 光学精密工程. 2017(09): 2437-2447 . 百度学术
    91. 张志武,荆晓远,吴飞. 面向分类的增量字典学习算法. 计算机工程. 2017(10): 167-171+185 . 百度学术
    92. 王晓燕,池天河. 结合变异粒子群和字典学习的遥感影像去噪. 计算机工程与科学. 2017(09): 1675-1681 . 百度学术
    93. 董侠,王丽芳,秦品乐,高媛. 改进耦合字典学习的脑部CT/MR图像融合方法. 计算机应用. 2017(06): 1722-1727+1746 . 百度学术
    94. 张静妙,孟宪遵,王晓娜. 基于高低分辨影像字典学习的稀疏超分辨重建. 控制工程. 2017(03): 505-510 . 百度学术
    95. 桑庆兵,程大宇. 稀疏表示的无参考图像质量评价方法. 计算机科学与探索. 2017(01): 144-154 . 百度学术
    96. 袁静,章毓晋. 融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用. 自动化学报. 2017(04): 604-610 . 本站查看
    97. 胡长胜,詹曙,吴从中. 基于深度特征学习的图像超分辨率重建. 自动化学报. 2017(05): 814-821 . 本站查看
    98. 王宇,张乐毅,郝耀军. 基于组稀疏表示的压缩感知核磁共振成像算法. 内蒙古师范大学学报(自然科学汉文版). 2017(01): 90-97+101 . 百度学术
    99. 张正,傅迎华. 基于稀疏表示的视网膜眼底图像血管检测. 软件导刊. 2017(02): 174-177 . 百度学术
    100. 王星,周一鹏,田元荣,陈游,周东青,贺继渊. 基于改进遗传算法和Sin-Chirplet原子的调频雷达信号稀疏分解. 上海交通大学学报. 2017(09): 1124-1130 . 百度学术
    101. 焦莉娟,王文剑,赵青杉,曹建芳. 基于均值计算的MSK-SVD图像去噪方法. 计算机工程与设计. 2017(12): 3380-3384 . 百度学术
    102. 龙海霞,卓力,屈盼玲,张菁. Weak Correlation Dictionary Construction Method for Sparse Coding. Journal of Shanghai Jiaotong University(Science). 2017(01): 77-81 . 百度学术
    103. 赵娜,赵彤洲,邹冲,刘莹,蔡敦波. 稀疏表示中字典学习的影响因子研究. 武汉工程大学学报. 2017(03): 267-272 . 百度学术
    104. 钱阳,李雷. 基于新型鲁棒字典学习的视频帧稀疏表示. 计算机技术与发展. 2017(02): 37-41 . 百度学术
    105. 钱阳,李雷,石曼曼. 基于双稀疏字典的新型盲压缩感知模型. 计算机技术与发展. 2017(05): 35-39+45 . 百度学术
    106. 钱阳,李雷,袁安安. 基于自适应K-SVD字典的视频帧稀疏重建算法. 计算机技术与发展. 2017(06): 36-40 . 百度学术
    107. 吕颢,刘峰,干宗良,麦媛玲. 基于字典学习的模糊车牌中文字符识别. 计算机技术与发展. 2017(11): 75-78 . 百度学术
    108. 王铁建,吴飞,荆晓远. 核字典学习在软件缺陷预测中的应用. 小型微型计算机系统. 2017(07): 1501-1505 . 百度学术
    109. 吴士力,唐振民,刘奇. 基于字典相干性优化的稀疏分类在发动机空燃比故障识别中的应用. 中国机械工程. 2017(23): 2773-2778+2784 . 百度学术
    110. 焦莉娟,王文剑,赵青杉,曹建芳. 近邻局部OMP稀疏表示图像去噪. 中国图象图形学报. 2017(11): 1486-1492 . 百度学术
    111. 殷鑫华,戴文战,李俊峰. 基于在线字典学习的自适应医学图像融合算法. 浙江理工大学学报(自然科学版). 2017(02): 246-254 . 百度学术
    112. 朱路,宋超,刘媛媛,黄志群,王杨. 基于混合稀疏基字典学习的微波辐射图像重构方法. 电子与信息学报. 2016(11): 2724-2730 . 百度学术
    113. 周颖,符冉迪,颜文,周峰,金炜. 基于结构组稀疏表示的红外云图超分辨率方法. 光电工程. 2016(12): 126-132 . 百度学术
    114. 王冬梅,冯偲,王海鹏,于微波. 疲劳驾驶检测中基于稀疏表示的眼睛状态识别研究. 影像科学与光化学. 2016(01): 95-101 . 百度学术
    115. 张静妙,高双喜,王晓娜. 基于低秩字典学习的高光谱遥感图像去噪. 控制工程. 2016(06): 823-827 . 百度学术
    116. 伍云霞,田一民. 基于字典学习的煤岩图像特征提取与识别方法. 煤炭学报. 2016(12): 3190-3196 . 百度学术
    117. 游寒旭,李为,李昕,朱杰. 稀疏线性预测字典在语音压缩感知中的应用. 上海师范大学学报(自然科学版). 2016(02): 223-229 . 百度学术
    118. 吴晓燕,王海燕. 基于显著图的特征字典构造方法. 计算机工程与设计. 2016(08): 2243-2247 . 百度学术
    119. 张爱辉,孙克辉. PCRM的改进及其在人体行为识别中的应用. 计算机工程与设计. 2016(09): 2515-2519 . 百度学术
    120. 孟祥瑞,赵瑞珍,岑翼刚,张凤珍. 用于压缩采样信号重建的回溯正则化自适应匹配追踪算法. 信号处理. 2016(02): 186-192 . 百度学术
    121. 范引娣. 基于分布结构约束稀疏表示的图像分类方法. 计算机与现代化. 2015(07): 73-76 . 百度学术
    122. 文伟,王英华,冯博,刘宏伟. 基于监督非相干字典学习的极化SAR图像舰船目标检测. 自动化学报. 2015(11): 1926-1940 . 本站查看

    其他类型引用(222)

  • 加载中
计量
  • 文章访问数:  6348
  • HTML全文浏览量:  149
  • PDF下载量:  5376
  • 被引次数: 344
出版历程
  • 收稿日期:  2014-04-14
  • 修回日期:  2014-10-12
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回