2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非局部相似模型的压缩感知图像恢复算法

沈燕飞 李锦涛 朱珍民 张勇东 代锋

沈燕飞, 李锦涛, 朱珍民, 张勇东, 代锋. 基于非局部相似模型的压缩感知图像恢复算法. 自动化学报, 2015, 41(2): 261-272. doi: 10.16383/j.aas.2015.c140210
引用本文: 沈燕飞, 李锦涛, 朱珍民, 张勇东, 代锋. 基于非局部相似模型的压缩感知图像恢复算法. 自动化学报, 2015, 41(2): 261-272. doi: 10.16383/j.aas.2015.c140210
SHEN Yan-Fei, LI Jin-Tao, ZHU Zhen-Min, ZHANG Yong-Dong, DAI Feng. Image Reconstruction Algorithm of Compressed Sensing Based on Nonlocal Similarity Model. ACTA AUTOMATICA SINICA, 2015, 41(2): 261-272. doi: 10.16383/j.aas.2015.c140210
Citation: SHEN Yan-Fei, LI Jin-Tao, ZHU Zhen-Min, ZHANG Yong-Dong, DAI Feng. Image Reconstruction Algorithm of Compressed Sensing Based on Nonlocal Similarity Model. ACTA AUTOMATICA SINICA, 2015, 41(2): 261-272. doi: 10.16383/j.aas.2015.c140210

基于非局部相似模型的压缩感知图像恢复算法

doi: 10.16383/j.aas.2015.c140210
基金项目: 

国家自然科学基金(61327013,61471343),中国科学院科研装备研制项目(YZ201321)资助

详细信息
    作者简介:

    李锦涛 中国科学院计算技术研究所研究员. 主要研究方向为多媒体技术, 虚拟现实技术与普适计算技术.E-mail: jtli@ict.ac.cn

    通讯作者:

    沈燕飞 中国科学院计算技术研究所副研究员. 2014 年获得中国科学院大学博士学位. 主要研究方向为图像处理. 本文通信作者. E-mail: syf@ict.ac.cn

Image Reconstruction Algorithm of Compressed Sensing Based on Nonlocal Similarity Model

Funds: 

Supported by National Natural Science Foundation of China (61327013, 61471343) and Instrument Developing Project of the Chinese Academy of Sciences (YZ201321)

  • 摘要: 针对压缩感知(Compressed sensing, CS)图像恢复问题, 提出了一种基于非局部相似模型的压缩感知恢复算法, 该算法将传统意义上二维图像块的稀疏性扩展到相似图像块组在三维空间上的稀疏性, 在提高图像表示稀疏度的同时进一步提高了压缩感知图像恢复效率, 恢复图像在纹理和结构保持方面都得到了很大的提升. 在该算法模型求解过程中, 使用增广拉格朗日方法将受限优化问题转换为非受限优化问题, 为减少计算复杂度, 还使用了基于泰勒展开的线性化技术来加速算法求解. 实验结果表明, 该算法的图像恢复性能优于目前主流的压缩感知图像恢复算法.
  • [1] Qaisar S, Bilal R M, Iqbal W, Naureen M, Sungyoung L. Compressive sensing: from theory to applications, a survey. Journal of Communications and Networks, 2013, 15(5): 443 -456
    [2] [2] Guo W H, Qin J, Yin W T. A New Detail-preserving Regularity Scheme. Technical Report, Rice CAAM, 2013.
    [3] [3] Xu Y Y, Yin W T. A fast patch-dictionary method for whole-image recovery. Technical Report, UCLA CAM, 2013.
    [4] [4] Baraniuk R G, Cevher V, Duarte M F, Hegde C. Model-based compressive sensing. IEEE Transactions on Information Theory, 2010, 56(4): 1982-2001
    [5] [5] Chen C, Huang J Z. Compressive sensing MRI with wavelet tree sparsity. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS). Nevada, USA: NIPS, 2012. 1124-1132
    [6] [6] He L H, Carin L. Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Transactions on Signal Processing, 2009, 57(9): 3488-3497
    [7] [7] Lustig M, Donoho D L, Santos J M, Pauly J M. Compressed sensing MRI. IEEE Signal Processing Magazine, 2008, 25(2): 72-82
    [8] [8] Ma S W, Yin W T, Zhang Y, Chakraborty A. An efficient algorithm for compressed MR imaging using total variation and wavelets. In: Proceedings of the 2008 Computer Vision and Pattern Recognition (CVPR). Anchorage, AK: IEEE, 2008. 1-8
    [9] [9] Egiazarian K, Foi A, Katkovnik V. Compressed sensing image reconstruction via recursive spatially adaptive filtering. In: Proceedings of the 2007 International Conference on Image Processing (ICIP). San Antonio, TX: IEEE, 2007. 549- 552
    [10] Dong W S, Zhang L, Shi G M, Li X. Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 2013, 22(4): 1620-1630
    [11] Waters A E, Sankaranarayanan A C, Baraniuk R G. SpaRCS: recovering low-rank and sparse matrices from compressive measurements. In: Proceedings of the 25th Annual Conference on Neural Information Processing Systems (NIPS). Granada, Spain: NIPS, 2011. 1089-1097
    [12] Ji H, Liu C Q, Shen Z W, Xu Y H. Robust video denoising using low rank matrix completion. In: Proceedings of the 2010 Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 1791-1798
    [13] Otazo R, Cands E, Sodickson D K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magnetic Resonance in Medicine, DOI: 10.1002/mrm.25240
    [14] Bioucas D J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage thresholding algorithms for image restoration. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004
    [15] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259- 268
    [16] Luo J H, Li W Q, Zhu Y M. Reconstruction from limited-angle projections based on -u spectrum analysis. IEEE Transactions on Image Processing, 2010, 19(1): 131-140
    [17] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2005. 60-65
    [18] Chan T F, Esedoglu S, Park F, Yip A. Recent Developments in Total Variation Image Restoration. Technical Report, Department of Mathematics, UCLA, 2004.
    [19] Chambolle A, Lions P L. Image recovery via total variation minimization and related problems. Numerische Mathematik, 1997, 76(2): 167-188
    [20] Goldfarb D, Yin W. Second-order cone programming methods for total variation based image restoration. SIAM Journal on Scientific Computing, 2005, 27(2): 622-645
    [21] Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Transactions on Information Theory, 2006, 52(12): 5406- 5425
    [22] Bioucas D J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization. In: Proceedings of the 2007 IEEE International Conference on Image Processing (ICIP). San Antonio, TX: IEEE, 2007. 105-108
    [23] Becker S, Bobin J, Cands E. NESTA: a fast and accurate first-order method for sparse recovery. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39
    [24] Yang J F, Zhang Y, Yin W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297
    [25] Yuan X M, Yang J F, Xiao Y H. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6(3): 547-563
    [26] Danielyan A, Katkovnik V, Egiazarian K. BM3D frames and variational image deblurring. IEEE Transactions on Image Processing, 2012, 21(4): 1715-1728
    [27] Efros A A, Leung T K. Texture synthesis by non-parametric sampling. In: Proceedings of the 1999 IEEE International Conference on Computer Vision (ICCV). Kerkyra: IEEE, 1999. 1033-1038
    [28] Afonso M, Bioucas D J, Figueiredo M. Fast image recovery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 2010, 19(9): 2345-2356
    [29] Protter M, Elad M, Takeda H, Milanfar P. Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Transactions on Image Processing, 2009, 18(1): 36-51
    [30] Dong W, Yang X, Shi G. Compressive sensing via reweighted TV and nonlocal sparsity regularisation. Electronics Letters, 2013, 49(3): 184-186
    [31] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2013, 16(8): 2080 -2095
    [32] Maggioni M, Katkovnik V, Egiazarian K, Foi A. A nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Transactions on Image Processing, 2013, 22(1): 119-133
    [33] MacQueen J B. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical. Berkeley California: Statistics and Probability, 1976. 281-297
    [34] Kohonen T. The self-organizing map. Proceedings of the IEEE, 1990, 78(9): 1464-1480
    [35] Hoppner F, Klawonn F, Kruse R, Runkler T. Fuzzy Cluster Analysis. Chichester: Wiley, 1999.
    [36] Gersho A. On the structure of vector quantizers. IEEE Transactions on Information Theory, 1982, 28(2): 157-166
    [37] Yang J F, Zhang Y. Alternating direction algorithms for L1-problems in compressive sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278
    [38] Mun S, Fowler J E. Residual reconstruction for block-based compressed sensing of video. In: Proceedings of the 2011 Data Compression Conference (DCC). Snowbird, UT: IEEE, 2011. 183-192
  • 加载中
计量
  • 文章访问数:  2543
  • HTML全文浏览量:  168
  • PDF下载量:  1892
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-01
  • 修回日期:  2014-08-12
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回