[1]
|
Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
|
[2]
|
[2] Ramirez I, Sprechmann P, Sapiro G. Classification and clustering via dictionary learning with structured incoherence and shared features. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 3501-3508
|
[3]
|
[3] Cands E J, Eldar Y C, Needell D, Randall P. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73
|
[4]
|
[4] Duarte-Carvajalino J M, Sapiro G. Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Transactions on Image Processing, 2009, 18(7): 1395-1408
|
[5]
|
[5] Zhang Q A, Li B X. Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: IEEE, 2010. 2691-2698
|
[6]
|
[6] Jiang Z L, Lin Z, Davis L S. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE, 2011. 1697-1704
|
[7]
|
[7] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Review, 2001, 43(1): 129-159
|
[8]
|
[8] Donoho D L, Huo X M. Uncertainty principles and ideal atomic decomposition. IEEE Transactions on Information Theory, 2001, 47(7): 2845-2862
|
[9]
|
[9] Tropp J A. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 2004, 50(10): 2231-2242
|
[10]
|
Donoho D L, Tsaig Y. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 2008, 54(11): 4789-812
|
[11]
|
Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322
|
[12]
|
Mailhe B, Barchiesi D, Plumbley M D. INK-SVD: learning incoherent dictionaries for sparse representation. In: Proceedings of the 2012 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Kyoto, Japan, USA: IEEE, 2012. 3573-3576
|
[13]
|
Barchiesi D, Plumbley M D. Learning incoherent dictionaries for sparse approximation using iterative projections and rotations. IEEE Transactions on Signal Processing, 2013, 61(8): 2055-2065
|
[14]
|
Yaghoobi M, Daudet L, Davies M E. Parametric dictionary design for sparse coding. IEEE Transactions on Signal Processing, 2009, 57(12): 4800-4810
|
[15]
|
Yaghoobi M, Daudet L, Davies M E. Structured and incoherent parametric dictionary design. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). Dallas, TX, USA: IEEE, 2010. 5486-5489
|
[16]
|
Cristian R. Design of incoherent frames via convex optimization. IEEE Signal Processing Letters, 2013, 20(7): 673-676
|
[17]
|
Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
|
[18]
|
Elad M. Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. New York: Springer, 2010. 95-100
|
[19]
|
Welch L. Lower bounds on the maximum cross correlation of signals. IEEE Transactions on Information Theory, 1974, 20(3): 397-399
|
[20]
|
Tropp J A, Dhillon I S, Heath R W, Strohmer T. Designing structured tight frames via an alternating projection method. IEEE Transactions on Information Theory, 2005, 51(1): 188-209
|
[21]
|
Horn R A, Johnson C R. Matrix Analysis. Cambridge, UK: Cambridge University Press, 1985. 411-427
|