2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种面向语义重叠社区发现的 Block 场取样算法

辛宇 杨静 谢志强

辛宇, 杨静, 谢志强. 一种面向语义重叠社区发现的 Block 场取样算法. 自动化学报, 2015, 41(2): 362-375. doi: 10.16383/j.aas.2015.c140136
引用本文: 辛宇, 杨静, 谢志强. 一种面向语义重叠社区发现的 Block 场取样算法. 自动化学报, 2015, 41(2): 362-375. doi: 10.16383/j.aas.2015.c140136
XIN Yu, YANG Jing, XIE Zhi-Qiang. An Overlapping Community Structure Detecting Algorithm in Semantic Social Network Based on Block Field. ACTA AUTOMATICA SINICA, 2015, 41(2): 362-375. doi: 10.16383/j.aas.2015.c140136
Citation: XIN Yu, YANG Jing, XIE Zhi-Qiang. An Overlapping Community Structure Detecting Algorithm in Semantic Social Network Based on Block Field. ACTA AUTOMATICA SINICA, 2015, 41(2): 362-375. doi: 10.16383/j.aas.2015.c140136

一种面向语义重叠社区发现的 Block 场取样算法

doi: 10.16383/j.aas.2015.c140136
基金项目: 

国家自然科学基金(61370083,61073043,61073041,61370086),国家教育部博士点基金(20112304110011,20122304110012)资助

详细信息
    作者简介:

    辛宇 哈尔滨工程大学计算机科学与技术学院博士研究生. 2011 年获哈尔滨理工大学计算机科学与技术学院硕士学位. 主要研究方向为数据库与知识工程.E-mail: xinyu@hrbeu.edu.cn

    通讯作者:

    杨静 哈尔滨工程大学计算机科学与技术学院教授. 主要研究方向为数据库与知识工程. 本文通信作者.E-mail: yangjing@hrbeu.edu.cn

An Overlapping Community Structure Detecting Algorithm in Semantic Social Network Based on Block Field

Funds: 

Supported by National Natural Science Foundation of China (61370083, 61073043, 61073041, 61370086) and National Research Foundation for the Doctoral Program of Higher Education of China (20112304110011, 20122304110012)

  • 摘要: 语义社会网络(Semantic social network, SSN)是一种包含信息节点及社会关系构成的新型复杂网络. 传统语义社会网络分析算法在进行社区挖掘时, 需要预先设定社区个数且无法发现重叠社区. 针对这一问题, 提出一种面向语义重叠社区发现的block场采样算法, 该算法首先以LDA (Latent dirichlet allocation)模型为语义分析模型, 建立了以取样节点为核心节点的block 场BAT (Block-author-topic)模型; 其次, 根据节点的语义分析结果, 建立可度量block区域的语义凝聚力方法, 实现了语义信息的可度量化; 最后, 以节点的语义凝聚力为输入, 改进了重叠社区发现的标签传播算法(Label propagation algorithm, LPA)及可评价语义社区的SQ度量模型, 并通过实验分析, 验证了本文算法及SQ 度量模型的有效性及可行性.
  • [1] Yang Bo, Liu Da-You, Liu Jinming, Jin Di, Ma Hai-Bin. Complex network clustering algorithms. Journal of Software, 2009, 20(1): 54-66(杨博, 刘大有, Liu Jinming, 金弟, 马海宾. 复杂网络聚类方法. 软件学报, 2009, 20(1): 54-66)
    [2] [2] Girvan M, Newman M E J. Community structure in social and biological networks. Proceedings of National Academy of Science of the United States of America, 2002, 99(12): 7821-7826
    [3] [3] Newman M E J. Fast algorithm for detecting community structure in networks. Physical Review E, 2004, 69(6): 066133
    [4] [4] Palla G, Derenyi I, Farkas I, Vicsde T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814-818
    [5] [5] Shen H W, Cheng X Q, Cai K, Hu M B. Detect overlapping and hierarchical community structure in networks. Physica A: Statistical Mechanics and Its Applications, 2009, 388(8): 1706-1712
    [6] [6] Lancichinetti A, Fortunato S, Kertesz J. Detecting the overlapping and hierarchical community structure in complex networks.New Journal of Physics, 2009, 11(3): 033015-27
    [7] [7] Gregory S. Finding overlapping communities in networks by label propagation. New Journal of Physics, 2010, 12(10): 103018
    [8] [8] Jin D, Yang B, Baquero C, Liu D Y, He D X, Liu J. A Markov random walk under constraint for discovering overlapping communities in complex networks. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(5): P05031-21
    [9] Jin Di, Yang Bo, Liu Jie, Liu Da-You, He Dong-Xiao. Ant colony optimization based on random walk for community detection in complex networks. Journal of Software, 2012, 23(3): 451-464(金弟, 杨博, 刘杰, 刘大有, 何东晓. 复杂网络簇结构探测 --- 基于随机游走的蚁群算法. 软件学报, 2012, 23(3): 451-464)
    [10] Gan Wen-Yan, He Nan, Li De-Yi, Wang Jian-Min. Community discovery method in networks based on topological potential. Journal of Software, 2009, 20(8): 2241-2254(淦文燕, 赫南, 李德毅, 王建民. 一种基于拓扑势的网络社区发现方法, 软件学报, 2009, 20(8): 2241-2254)
    [11] Jin Di, Liu Jie, Yang Bo, He Dong-Xiao, Liu Da-You. Genetic algorithm with local search for community detection in large-scale complex networks. Acta Automatica Sinica, 2011, 37(7): 873-882(金弟, 刘杰, 杨博, 何东晓, 刘大有. 局部搜索与遗传算法结合的大规模复杂网络社区探测. 自动化学报, 2011, 37(7): 873-882)
    [12] He Dong-Xiao, Zhou Xu, Wang Zuo, Zhou Chun-Guang, Wang Zhe, Jin Di. Community mining in complex Networks-Clustering combination based genetic algorithm. Acta Automatica Sinica, 2010, 36(8): 1160-1170(何东晓, 周栩, 王佐, 周春光, 王喆, 金弟. 复杂网络社区挖掘基于聚类融合的遗传算法. 自动化学报, 2010, 36(8): 1160-1170)
    [13] Yang Bo, Liu Jie, Liu Da-You. A random network ensemble model based generalized network community mining algorithm. Acta Automatica Sinica, 2012, 38(5): 812-822(杨博, 刘杰, 刘大有. 基于随机网络集成模型的广义网络社区挖掘算法. 自动化学报, 2012, 38(5): 812-822)
    [14] Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation. Journal of Machine Learning Research, 2003, 3: 993-1022
    [15] Zhang H Z, Qiu B J, Giles C L, Foley H C, Yen J. An LDA-based community structure discovery approach for large-scale social networks. In: Proceedings of the 2007 IEEE on Intelligence and Security Informatics. New Brunswick, NJ: IEEE, 2007. 200-207
    [16] Kemp C, Tenenbaum J B, Griffiths T L, Yamada T, Ueda N. Learning systems of concepts with an infinite relational model. In: Proceedings of the 21st National Conference on Artificial Intelligence. California: AAAI Press 2006. 381- 388
    [17] Henderson K, Eliassi R T. Applying latent dirichlet allocation to group discovery in large graphs. In: Proceedings of the 2009 ACM Symposium on Applied Computing. Honolulu, Hawaii, USA: ACM, 2009. 1456-1461
    [18] Henderson K, Eliassi R T, Papadimitriou S, Faloutsos C. HCDF: A hybrid community discovery framework. In: Proceedings of the 2010 SIAM Conference. SDM. 2010. 754-765
    [19] Zhang H Z, Giles C L, Foley H C, Yen J. Probabilistic community discovery using hierarchical latent Gaussian mixture model. In: Proceedings of the 22nd National Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2007. 663 -668
    [20] Zhang H Z, Li W, Wang X R, Giles C L, Foley H C, Yen J. HSN-PAM: finding hierarchical probabilistic groups from large-scale networks. In: Proceedings of the 7th IEEE International Conference on Data Mining Workshops. Omaha, Nebraska, USA: IEEE, 2007. 27-32
    [21] Steyvers M, Smyth P, Rosen Z M, Griffiths T. Probabilistic author-topic models for information discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2004. 306-315
    [22] McCallum A, Corrada-Emmanuel A, Wang X. Topic and role discovery in social networks. Computer Science Department Faculty Publication Series, 2005, 3(1): 1-7
    [23] McCallum A, Wang X R, Corrada-Emmanuel A. Topic and role discovery in social networks with experiments on Enron and academic email. Journal of Artificial Intelligence Research, 2007, 30(1): 249-272
    [24] Zhou D, Manavoglu E, Li J, Giles C L, Zha H Y. Probabilistic models for discovering e-communities. In: Proceedings of the 15th International Conference on World Wide Web. Edinburgh, Scotland, UK: ACM, 2006. 173-182
    [25] Cha Y, Cho J. Social-network analysis using topic models. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2012. 565-574
    [26] Wang X, Mohanty N, McCallum A. Group and topic discovery from relations and text. In: Proceedings of the 3rd International Workshop on Link Discovery. New York, USA: ACM, 2005. 28-35
    [27] Pathak N, DeLong C, Banerjee A, Erickson K. Social topic models for community extraction. In: Proceedings of the 2nd SNA-KDD Workshop. Las Vegas, Nevada, USA: ACM, 2008. 1-10
    [28] Mei Q Z, Cai D, Zhang D, Zhai C X. Topic modeling with network regularization. In: Proceedings of the 17th International Conference on World Wide Web. Beijing, China: ACM, 2008. 101-110
    [29] Sachan M, Contractor D, Faruquie T A, Subramaniam V. Probabilistic model for discovering topic based communities in social networks. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2011. 2349-2352
    [30] Sachan M, Contractor D, Faruquie T A, Subramaniam V L. Using content and interactions for discovering communities in social networks. In: Proceedings of the 21st International Conference on World Wide Web. New York, USA: ACM, 2012. 331-340
    [31] Yin Z J, Cao L L, Gu Q Q, Han J W. Latent community topic analysis: integration of community discovery with topic modeling. ACM Transactions on Intelligent Systems and Technology, 2012, 3(4): 63
    [32] Xie J R, Szymanski B K, Liu X M. SLPA: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: Proceedings of the 11th IEEE International Conference of Data Mining Workshops. Vancouver, BC: IEEE, 2011. 344-349
  • 加载中
计量
  • 文章访问数:  1717
  • HTML全文浏览量:  34
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-14
  • 修回日期:  2014-08-12
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回