2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有对称初始数据的二维反应扩散方程的边界镇定

齐洁 齐金鹏

齐洁, 齐金鹏. 具有对称初始数据的二维反应扩散方程的边界镇定. 自动化学报, 2015, 41(1): 209-214. doi: 10.16383/j.aas.2015.c140108
引用本文: 齐洁, 齐金鹏. 具有对称初始数据的二维反应扩散方程的边界镇定. 自动化学报, 2015, 41(1): 209-214. doi: 10.16383/j.aas.2015.c140108
QI Jie, QI Jin-Peng. Boundary Stabilization for a 2-D Reaction-diffusion Equation with Symmetrical Initial Data. ACTA AUTOMATICA SINICA, 2015, 41(1): 209-214. doi: 10.16383/j.aas.2015.c140108
Citation: QI Jie, QI Jin-Peng. Boundary Stabilization for a 2-D Reaction-diffusion Equation with Symmetrical Initial Data. ACTA AUTOMATICA SINICA, 2015, 41(1): 209-214. doi: 10.16383/j.aas.2015.c140108

具有对称初始数据的二维反应扩散方程的边界镇定

doi: 10.16383/j.aas.2015.c140108
基金项目: 

国家自然科学基金重点项目(61134009);国家自然科学基金(61104154);中央高校基本科研业务费专项资金资助

详细信息
    作者简介:

    齐洁 东华大学信息科学与技术学院副教授.主要研究方向为分布式参数系统控制,多智能体协同控制与优化.E-mail:jieqi@dhu.edu.cn

    通讯作者:

    齐金鹏 东华大学信息科学与技术学院副教授.主要研究方向为系统分析与建模,分布式参数系统,数据分析与智能算法.本文通信作者.E-mail:qipengkai@126.com

Boundary Stabilization for a 2-D Reaction-diffusion Equation with Symmetrical Initial Data

Funds: 

Supported by National Natural Science Foundation Key Program of China (61134009), National Natural Science Foundation of China (61104154), and Fundamental Research Funds for the Central Universities

  • 摘要: 研究了二维圆盘上具有对称初始数据的反应扩散方程的边界控制. 由于初始条件和边界条件关于圆心旋转对称, 系统可以转化为等价的极坐标系下的一维抛物方程. 此时, 极点的奇异性成为了控制器设计中的难点. 本文设计了一系列方程变换, 消除了核函数方程中极点奇异性的影响, 将其转化为修正的Bessel方程, 求出了显式的核函数表达式和精确的边界反馈控制律, 扩展了偏微分方程的backstepping方法. 系统的收敛速度可通过改变控制器中的一个参数来调节. 然后用Lyapunov函数法证明了闭环系统在H1范数下指数稳定, 表明了系统对初值的连续依赖. 最后用数值仿真验证了方法的有效性.
  • [1] Padhi R, Ali S F. An account of chronological developments in control of distributed parameter systems. Annual Reviews in Control, 2009, 33(1): 59-68
    [2] Butkovskii A G. The maximum principle for optimum systems with distributed parameters. Automation and Remote Control, 1961, 22(10): 1156-1169
    [3] Triggiani R. Boundary feedback stabilizability of parabolic equations. Applied Mathematics and Optimization, 1980, 6(1): 201-220
    [4] Fard M, Sagatun S. Exponential stabilization of a transversely vibrating beam via boundary control. Journal of Sound and Vibration, 2001, 240(4): 613-622
    [5] Li Jian, Liu Yun-Gang. Adaptive boundary control for a class of uncertain heat equations. Acta Automatica Sinica, 2012, 38(3): 469-473 (李健, 刘允刚. 一类不确定热方程自适应边界控制. 自动化学报, 2012, 38(3): 469-473)
    [6] Guo B Z, Kang W. The Lyapunov approach to boundary stabilization of an anti-stable one-dimensional wave equation with boundary disturbance. International Journal of Robust and Nonlinear Control, 2014, 24(1): 54-69
    [7] Rebarber R. Conditions for the equivalence of internal and external stability for distributed parameter systems. IEEE Transactions on Automatic Control, 1993, 38(6): 994-998
    [8] Ge Z, Zhu G, Feng D. Degenerate semi-group methods for the exponential stability of the first order singular distributed parameter systems. Journal of Systems Science & Complexity, 2008, 21(2): 260-266
    [9] Cheng M B, Radisavljevic V, Su W C. Sliding mode boundary control of a parabolic PDE system with parameter variations and boundary uncertainties. Automatica, 2011, 47(2): 381-387
    [10] Guo B Z, Liu J J. Sliding mode control and active disturbance rejection control to the stabilization of one-dimensional schrödinger equation subject to boundary control matched disturbance. sl International Journal of Robust and Nonlinear Control, 2014, 24(16): 2194-2212
    [11] Li H X, Qi C K. Modelling of distributed parameter systems for applications——a synthesized review from time-space separation. Journal of Process Control, 2010, 20(8): 891-901
    [12] Dubljevic S, El-Farra N H, Mhaskar P, Christofides P D. Predictive control of parabolic PDEs with state and control constraints. International Journal of Robust and Nonlinear Control, 2006, 16(16): 749-772
    [13] Krstic M. Systematization of approaches to adaptive boundary stabilization of pdes. International Journal of Robust and Nonlinear Control, 2006, 16(16): 801-818
    [14] Vazquez R, Krstic M. Boundary observer for output-feedback stabilization of thermaluid convection loop. IEEE Transactions on Control Systems Technology, 2010, 18(4): 789-797
    [15] Li Xiao-Guang, Liu Jin-Kun. Continuum backstepping control algorithms in partial differential equation orientation: a review. Control Theory & Applications, 2012, 29(7): 825-832 (李晓光, 刘金琨. 面向偏微分方程的连续反演控制算法综述. 控制理论与应用, 2012, 29(7): 825-832)
    [16] Smyshev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12): 2185-2202
    [17] Krstic M, Smyshev A. Boundary Control of PDEs: A Course on Backstepping Designs. Philadelphia: SIAM, 2008.
    [18] Vazquez R, Krstic M. Marcum Q-functions and explicit kernels for stabilization of 2×2 linear hyperbolic systems with constant coefficients. Systems & Control Letters, 2014, 68: 33-42
    [19] Aamo O M, Smyshev A, Krstic M. Boundary control of the linearized Ginzburg-Landau model of vortex shedding. SIAM Journal on Control and Optimization, 2005, 43(6): 1953-1971
    [20] Wang Yue, Wu Cheng-Xun. Study on non-solvent diffusion of PAN-based carbon fiber precursor in dry-jet wet spinning process. Chemical Industry and Engineering, 2007, 22(4): 28-31 (王 玥, 吴承训. 聚丙烯腈基碳纤维原丝在干湿法纺丝中非溶剂扩散过程的研究. 化学工业与工程, 2007, 22(4): 28-31)
    [21] Tang K T. Mathematical Methods for Engineers and Scientists. Berlin: Springer-Verlag, 2007. 142-186
    [22] Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011. 326-328
  • 加载中
计量
  • 文章访问数:  1469
  • HTML全文浏览量:  51
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-21
  • 修回日期:  2014-06-30
  • 刊出日期:  2015-01-20

目录

    /

    返回文章
    返回