[1]
|
Zhou M, Ding Y, Huang C N. Improving translation selection with a new translation model trained by independent monolingual corpora. Computational Linguistics and Chinese Language Processing, 2001, 6(1): 1-26
|
[2]
|
[2] Leacock C, Chodorow M. Combining Local Context and WordNet Similarity for Word Sense Identification. Cambridge: MIT Press, 1998. 265-283
|
[3]
|
Lu Wen-Peng, Huang He-Yan, Wu Hao. Word sense disambiguation with graph model based on domain knowledge. Acta Automatica Sinica, 2006, 40(12): 2836-2850(鹿文鹏, 黄河燕, 吴昊. 基于领域知识的图模型词义消歧方法. 自动化学报, 2014, 40(12): 2836-2850)
|
[4]
|
Liu Yu-Peng, Li Sheng, Zhao Tie-Jun. System combination based on WSD using wordnet. Acta Automatica Sinica, 2010, 36(11): 1575-1580(刘宇鹏, 李生, 赵铁军. 基于WordNet词义消歧的系统融合. 自动化学报, 2010, 36(11): 1575-1580)
|
[5]
|
[5] Hassan H, Hassan A, Emam O. Unsupervised information extraction approach using graph mutual reinforcement. In: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2006. 501-508
|
[6]
|
Li Wen-Qing, Sun Xin, Zhang Chang-You, Feng Ye. A semantic similarity measure between ontological concepts. Acta Automatica Sinica, 2012, 38(2): 229-235(李文清, 孙新, 张常有, 冯烨. 一种本体概念的语义相似度计算方法. 自动化学报, 2012, 38(2): 229-235)
|
[7]
|
[7] Cui Q, Gao B, Bian J, Qiu S, Liu T Y. KNET: A General Framework for Learning Word Embedding Using Morphological Knowledge. arXiv: 1407.1687, 2014. 1-16
|
[8]
|
[8] Rada R, Mili H, Bicknell E, Blettner M. Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(1): 17-30
|
[9]
|
[9] Resnik P. Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995. 448-453
|
[10]
|
Wu Z B, Palmer M. Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 1994. 133-138
|
[11]
|
Agirre E, Rigau G. A proposal for word sense disambiguation using conceptual distance. In: Proceedings of the 1st International Conference on Recent Advances in Natural Language Processing. Stroudsburg, Cambridge: MIT Press, 1995. 35-43
|
[12]
|
Jiang J J, Conrath D W. Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 1997 International Conference on Research in Computational Linguistics. Stroudsburg, PA: ACL, 1997. 19-33
|
[13]
|
Lin D K. An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1998. 296-304
|
[14]
|
Hirst G, St-Onge D. Lexical Chains as Representations of Context for the Detection and Correction of Malapropisms. Cambridge: MIT Press, 1998. 305-332
|
[15]
|
Li Y H, Bandar Z A, McLean D. An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering, 2003, 15(4): 871-882
|
[16]
|
Yang D Q, Powers D M W. Measuring semantic similarity in the taxonomy of wordnet. In: Proceedings of the 28th Australasian Conference on Computer Science. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2005. 315-322
|
[17]
|
Budanitsky A, Hirst G. Evaluating wordnet-based measures of lexical semantic relatedness. Computational Linguistics, 2006, 32(1): 13-47
|
[18]
|
Alvarez M A, Lim S J. A graph modeling of semantic similarity between words. In: Proceedings of the 2007 International Conference on Semantic Computing. Irvine, CA: IEEE, 2007. 355-362
|
[19]
|
Qin P, Lu Z, Yan Y, Wu F. A new measure of word semantic similarity based on wordnet hierarchy and DAG theory. In: Proceedings of the 2009 International Conference on Web Information Systems and Mining. Shanghai, China: IEEE, 2009. 181-185
|
[20]
|
Pirr G. A semantic similarity metric combining features and intrinsic information content. Data Knowledge Engineering, 2009, 68(11): 1289-1308
|
[21]
|
Cai S M, Lu Z. An improved semantic similarity measure for word pairs. In: Proceedings of 2010 International Conference on e-Education, e-Business, e-Management and e-Learning. Sanya, China: IEEE, 2010. 212-216
|
[22]
|
Snchez D, Batet M, Isern D. Ontology-based information content computation. Knowledge-Based Systems, 2011, 24(2): 297-303
|
[23]
|
Snchez D, Batet M, Isern D, Valls A. Ontology-based semantic similarity: a new feature-based approach. Expert Systems with Applications, 2012, 39(9): 7718-7728
|
[24]
|
Liu H Z, Bao H, Xu D. Concept Vector for semantic similarity and relatedness based on WordNet structure. Journal of Systems and Software, 2012, 85(2): 370-381
|
[25]
|
Dagan I, Lee L, Pereira F C N. Similarity-based models of word cooccurrence probabilities. Machine Learning, 1999, 34(1-3): 43-69
|
[26]
|
Brown P F, Pietra S A D, Pietra V J D, Mercer R L. Word-sense disambiguation using statistical methods. In: Proceedings of the 29th Annual Meeting on Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics, 1991. 264-270
|
[27]
|
Lee L. Similarity-based Approaches to Natural Language Processing [Ph.D. dissertation], Harvard University, Cambridge, MA, USA, 1997.
|
[28]
|
Liu L, Zhong M S, Lu R Z. Measuring word similarity based on pattern vector space model. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence. Piscataway, NJ: IEEE, 2009. 72-76
|
[29]
|
Xu T, Qu W G, Tang X R, Ding D X, Li B, Li H. Computing word similarity on large-scale corpus. In: Proceedings of the 4th International Conference on Innovative Computing, Information and Control. Kaohsiung: IEEE, 2009. 1076-1079
|
[30]
|
Radinsky K, Agichtein E, Gabrilovich E, Markovitch S. A word at a time: computing word relatedness using temporal semantic analysis. In: Proceedings of the 20th international conference on World Wide Web. New York, NY, USA: ACM, 2011. 337-346
|
[31]
|
Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976.
|
[32]
|
Rubenstein H, Goodenough J B. Contextual correlates of synonymy. Communications of the ACM, 1965, 8(10): 627-633
|
[33]
|
Zhou Hao, Li Shao-Hong. New combination algorithm of conflict evidences introduced by GDOP. Control and Decision, 2010, 25(2): 278-281(周皓, 李少洪. GDOP引出的冲突证据组合新算法. 控制与决策, 2010, 25(2): 278-281)
|
[34]
|
Voorbraak F. A Computationally efficient approximation of Dempster-Shafer theory. International Journal of Man-Machine Studies, 1989, 30(5): 525-536
|
[35]
|
Miller G, Charles W. Contextual correlates of semantic similarity. Language and Cognitive Processes, 1991, 6(1): 1-28
|
[36]
|
Finkelstein L, Gabrilovich E, Matias Y, Rivlin E, Solan Z, Wolfman G, Ruppin E. Placing search in context: the concept revisited. ACM Transactions on Information Systems, 2002, 20(1): 116-131
|