2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LFM宽带雷达信号的多通道盲压缩感知模型研究

方标 黄高明 高俊

方标, 黄高明, 高俊. LFM宽带雷达信号的多通道盲压缩感知模型研究. 自动化学报, 2015, 41(3): 591-600. doi: 10.16383/j.aas.2015.c130912
引用本文: 方标, 黄高明, 高俊. LFM宽带雷达信号的多通道盲压缩感知模型研究. 自动化学报, 2015, 41(3): 591-600. doi: 10.16383/j.aas.2015.c130912
FANG Biao, HUANG Gao-Ming, GAO Jun. A Multichannel Blind Compressed Sensing Framework for Linear Frequency Modulated Wideband Radar Signals. ACTA AUTOMATICA SINICA, 2015, 41(3): 591-600. doi: 10.16383/j.aas.2015.c130912
Citation: FANG Biao, HUANG Gao-Ming, GAO Jun. A Multichannel Blind Compressed Sensing Framework for Linear Frequency Modulated Wideband Radar Signals. ACTA AUTOMATICA SINICA, 2015, 41(3): 591-600. doi: 10.16383/j.aas.2015.c130912

LFM宽带雷达信号的多通道盲压缩感知模型研究

doi: 10.16383/j.aas.2015.c130912
基金项目: 

国家高技术研究发展计划(863计划) (2013AA7014061)资助

详细信息
    作者简介:

    黄高明 海军工程大学教授.2006年获得东南大学信号与通信工程博士学位.主要研究方向为雷达/电子战信号处理, 盲信号处理, 无源探测, 电子战系统仿真与效能评估.E-mail: hgaom@163.com

    通讯作者:

    方标 海军工程大学通信与信息系统专业博士研究生.主要研究方向为盲信号处理, 压缩感知.本文通信作者. E-mail: allan_fb@163.com

A Multichannel Blind Compressed Sensing Framework for Linear Frequency Modulated Wideband Radar Signals

Funds: 

Supported by National High Technology Research and Development Program of China (863 Program) (2013AA7014061)

  • 摘要: 在传统压缩感知(Compressed sensing, CS)基础上,提出了一种基于盲压缩感知(Blind compressed sensing, BCS)理论的线性调频(Linear frequency modulated, LFM)雷达信号欠采样与重构的多通道模型.这一机制在稀疏基未知的条件下,利用LFM信号在分数阶傅里叶变换(Fractional Fourier transform, FRFT)域上良好的能量聚集特性,将多个LFM信号看作是在多个未知阶次下FRFT域的稀疏表达,通过时延相关解线调和逐次消去相结合的的欠采样方法逐一估计出每个通道的LFM信号满足聚集性条件的特定分数阶傅里叶域,以此构造出该通道LFM信号对应的DFRFT正交稀疏基字典,以各DFRFT 正交基为对角块构建混合信号正交稀疏基字典,最后利用块重构算法从测量值中估计出稀疏信号,同时验证了LF M信号多通道BCS问题解的唯一性,从而实现了稀疏基未知情况下针对多路LFM宽带雷达信号的多通道盲压缩感知.
  • [1] Yang Jun, Wang Min-Sheng, Bao Zheng. A real-time implementation technique of multi-target ISAR imaging. Acta Electronica Sinica, 1995, 23(4): 1-5(杨军, 王民胜, 保铮. 一种ISAR多目标实时成像方法. 电子学报, 1995, 23(4): 1-5)
    [2] [2] Wood J C, Barry D T. Radon transformation of time-frequency distributions for analysis of multicomponent signals. IEEE Transactions on Signal Processing, 1994, 42(11): 3166-3177
    [3] Qi Lin, Tao Ran, Zhou Si-Yong, Wang Yue. Detection and parameter estimation of multi-component LFM signals based on fractional Fourier transform. Science in China Series F: Information Sciences, 2003, 33(8): 749-759(齐林, 陶然, 周思永, 王越. 基于分数阶 Fourier 变换的多分量LFM信号的检测和参数估计. 中国科学F辑: 信息科学, 2003, 33(8): 749-759)
    [4] Liu Feng, Xu Hui-Fa, Tao Ran, Wang Yue. Research on resolution among multi-component LFM signals in the fractional Fourier domain. Science in China Series F: Information Sciences, 2012, 42(2): 138-150(刘锋, 徐会法, 陶然, 王越. 分数阶Fourier域多分量LFM信号间的分辨研究. 中国科学F辑: 信息科学, 2012, 42(2): 138-150)
    [5] [5] Guo Q, Li Y J, Wang C H. A new method of detecting multi-component LFM signals based on blind signal processing. Journal of Computers, 2011, 6(9): 1976-1982
    [6] [6] Millioz F, Davies M. Sparse detection in the chirplet transform: application to FMCW radar signals. IEEE Transactions on Signal Processing, 2012, 60(6): 2800-2813
    [7] [7] Cands E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
    [8] Li Shu-Tao, Wei Dan. Survey on compressive sensing. Acta Automatica Sinica, 2009, 35(11): 1369-1377 (李树涛, 魏丹. 压缩传感综述. 自动化学报, 2009, 35(11): 1369- 1377)
    [9] [9] Shi G M, Lin J, Chen X Y, Qi F, Liu D H, Zhang L. UWB echo signal detection with ultra-low rate sampling based on compressed sensing. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55(4): 379-383
    [10] Gleichman S, Eldar Y C. Blind compressed sensing. IEEE Transactions on Information Theory, 2011, 57(10): 6958- 6975
    [11] Gleichman S, Eldar Y C. Blind compressed sensing: theory. In: Proceedings of the 9th International Conference on Latent Variable Analysis and Signal Separation. St. Malo, France: Springer, 2010. 386-393
    [12] Duarte M F, Sarvotham S, Baron D, Wakin M B, Baraniuk R G. Distributed compressed sensing of jointly sparse signals. In: Proceedings of the 39th Asilomar Conference on Signals, Systems, and Computers. Pacific Grove, CA: IEEE, 2005. 1537-1541
    [13] Gleichman S, Eldar Y C. Multichannel blind compressed sensing. In: Proceedings of the 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM). Jerusalem: IEEE, 2010. 129-132
    [14] Mishali M, Eldar Y C. Sparse source separation from orthogonal mixtures. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech, and Signal Processing. Taipei, China: IEEE, 2009. 3145-3148
    [15] Tao R, Deng B, Wang Y. Fractional Fourier transform and its evolution in signal processing. Science in China Series E: Information Sciences, 2006, 36(2): 113-136
    [16] Tao Ran, Deng Bing, Wang Yue. Fractional Fourier Transform and Its Application. Beijing: Tsinghua University Press, 2009. (陶然, 邓兵, 王越. 分数阶傅里叶变换及其应用. 北京: 清华大学出版社, 2009.)
    [17] Namias V. The fractional Fourier transform and its application in quantum mechanics. Institute of Mathematics and Its Applications, 1980, 25: 241-265
    [18] Donoho D L, Elad M. Maximal sparsity representation via l1 minimization. Proceedings of the National Academy of Sciences of the United States of America 2003, 100(3): 2197- 2202
    [19] Shen Xian-Xiang, Ye Rui-Qing, Tang Bin, Yang Jian-Yu. An algorithm for estimation of wideband LFM signal parameters based on subsampling. Chinese Journal of Radio Science, 2007, 22(1): 43-46(沈显祥, 叶瑞青, 唐斌, 杨建宇. 基于欠采样的宽带线性调频信号参数估计. 电波科学学报, 2007, 22(1): 43-46)
    [20] Pei S C, Ding J J. Closed-form discrete fractional and affine Fourier transform. IEEE Transactions on Signal Processing, 2000, 48(5): 1338-1353
    [21] Eldar Y C, Kuppinger P, Blcskei H. Block-sparse signals: uncertainty relations and efficient recovery. IEEE Transactions on Signal Processing, 2010, 58(6): 3042-3054
    [22] Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666
    [23] Majumdar A, Ward R K. Fast group sparse classification. Canadian Journal of Electrical and Computer Engineering, 2009, 34(4): 136-144
    [24] Blumensath T, Davies M E. Gradient pursuits. EEE Transactions on Signal Processing, 2008, 56(6): 2370-2382
    [25] Li Zhi-Lin, Chen Hou-Jin, Yao Chang, Li Ju-Peng. Compressed sensing reconstruction algorithm based on spectral projected gradient pursuit. Acta Automatica Sinica, 2012, 38(7): 1218-1223 (李志林, 陈后金, 姚畅, 李居朋. 基于谱投影梯度追踪的压缩感知重建算法. 自动化学报, 2012, 38(7): 1218-1223)
  • 加载中
计量
  • 文章访问数:  1892
  • HTML全文浏览量:  125
  • PDF下载量:  1091
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-26
  • 修回日期:  2014-06-18
  • 刊出日期:  2015-03-20

目录

    /

    返回文章
    返回