2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分块奇异值分解的两级图像去噪算法

刘涵 梁莉莉 黄令帅

杨贵军, 蒋朝辉, 桂卫华, 阳春华, 谢永芳. 基于熵权-可拓理论的高炉软熔带位置状态模糊综合评判方法. 自动化学报, 2015, 41(1): 75-83. doi: 10.16383/j.aas.2015.c140232
引用本文: 刘涵, 梁莉莉, 黄令帅. 基于分块奇异值分解的两级图像去噪算法. 自动化学报, 2015, 41(2): 439-444. doi: 10.16383/j.aas.2015.c130909
YANG Gui-Jun, JIANG Zhao-Hui, GUI Wei-Hua, YANG Chun-Hua, XIE Yong-Fang. Fuzzy Synthesis Evaluation Method for Position State of Blast Furnace Cohesive Zone Based on Entropy Weight Extension Theory. ACTA AUTOMATICA SINICA, 2015, 41(1): 75-83. doi: 10.16383/j.aas.2015.c140232
Citation: LIU Han, LIANG Li-Li, HUANG Ling-Shuai. Two-stage Image Denoising Using Patch-based Singular Value Decomposition. ACTA AUTOMATICA SINICA, 2015, 41(2): 439-444. doi: 10.16383/j.aas.2015.c130909

基于分块奇异值分解的两级图像去噪算法

doi: 10.16383/j.aas.2015.c130909
基金项目: 

国家自然科学基金(61174101,61403305),高等学校博士学科点专项科研基金(2012611811004,2013611812005),陕西省教育厅科研计划项目(14JK1543)资助

详细信息
    作者简介:

    梁莉莉 西安理工大学自动化与信息工程学院讲师. 主要研究方向为多速率信号处理, 数字图像处理, 稀疏表示.E-mail: llliang@xaut.edu.cn

    黄令帅, 西安理工大学自动化与信息工程学院硕士研究生. 主要研究方向为图像稀疏表示.E-mail: windbird007@163.com

    通讯作者:

    刘涵 西安理工大学自动化与信息工程学院教授. 主要研究方向为机器学习, 模式识别, 智能信息处理. E-mail: liuhan@xaut.edu.cn

Two-stage Image Denoising Using Patch-based Singular Value Decomposition

Funds: 

Supported by National Natural Science Foundation of China (61174101, 61403305), Specialized Research Fund for the Doctoral Program of Higher Education (2012611811004, 2013611812005), and Scientific Research Program Funded by Shaanxi Provincial Education Department (14JK1543)

  • 摘要: 为了更有效地进行图像去噪, 提出了一种基于分块奇异值分解(Singular value decomposition, SVD) 的两级图像去噪方法, 该方法首先将含噪图像中具有相似结构的图像块组织成具有很强相关性的图像块组; 然后, 利用二维奇异值分解去除图像块组中每个相似块的内部相关性, 利用一维奇异值分解去除相似图像块组之间的冗余; 最后, 通过硬阈值方法收缩变换系数实现图像与噪声的有效分离. 为了进一步提高去噪效果, 对含噪图像再次进行上述操作. 不同的是, 在第二级去噪过程中,相似图像块组根据第一级估计出的图像计算获得且相似图像块间的相关性通过离散余弦变换去除. 仿真实验表明, 提出的两级图像去噪算法不仅可以较大程度地去除图像噪声, 还能有效保留图像细节, 取得了良好的去噪效果.
  • [1] Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 60-65
    [2] [2] Easley G R, Labate D, Colonna F. Shearlet based total variation for denoising. IEEE Transactions on Image Processing, 2009, 16(2): 260-268
    [3] Xie Kai, Zhang Fen. Overcomplete representation base image denoising algorithm. Acta Electronica Sinica, 2013, 41(10): 1911-1916(解凯, 张芬. 基于过完备表示的图像去噪算法. 电子学报, 2013, {\bf 41}(10): 1911-1916)
    [4] [4] Huang D A, Kang L W, Wang Y C, Lin C W. Self-learning based image decomposition with applications to single image denoising. IEEE Transactions on Multimedia, 2014, 16(1): 83-93
    [5] Xue Qian, Yang Cheng-Yi, Wang Hua-Xiang. Alternating direction method for salt-and-pepper denoising. Acta Automatica Sinica, 2013, 39(12): 2071-2076(薛倩, 杨程屹, 王化祥. 去除椒盐噪声的交替方向法. 自动化学报, 2013, 39(12): 2071-2076)
    [6] [6] Mahmoudi M, Sapiro G. Fast image and video denoising via non-local means of similar neighborhoods. IEEE Signal Processing Letters, 2005, 12(12): 839-842
    [7] [7] Yan R M, Shao L, Cvetkovic S D, Klijn J. Improved nonlocal means based on pre-classification and invariant block matching. Journal of Display Technology, 2012, 8(4): 212-218
    [8] [8] Zhang X D, Feng X C, Wang W W. Two-direction nonlocal model for image denoising. IEEE Transactions on Image Processing, 2013, 22(1): 408-412
    [9] Hao Hong-Xia, Liu Fang, Jiao Li-Cheng, Wu Jie. A non-local means algorithm for image denoising using structure adaptive window. Journal of Xi'an Jiaotong University, 2013, 47(12): 71-76(郝红侠, 刘芳, 焦李成, 武杰. 采用结构自适应窗的非局部均值图像去噪算法. 西安交通大学学报, 2013, 47(12): 71-76)
    [10] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745
    [11] Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095
    [12] Muresan D D, Parks T W. Adaptive principal components and image denoising. In: Proceedings of the 2003 International Conference on Image Processing. Barcelona, Spain: IEEE, 2003. 101-104
    [13] Zhang L, Dong W S, Zhang D, Shi G M. Two-stage image denoisng by principal component analysis with local pixel grouping. Pattern Recognition, 2010, 43(4): 1531-1549
    [14] He Y M, Gan T, Chen W F, Wang H J. Adaptive denoising by singular value decomposition. IEEE Signal Processing Letters, 2011, 18(4): 215-219
    [15] Dabov K, Foi A, Katkovnik V, Egiazarian K. BM3D image denoising with shape-adaptive principal component analysis. In: Proceedings of the 2009 Workshop on Signal Processing with Adaptive Sparse Structured Representations. Saint-Malo, France: IEEE, 2009. 1-6
    [16] Wang H C, Ahuja N. Rank-R approximation of tensors using image-as-matrix representation. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 346-353
    [17] Ding C, Ye J P. Two-dimensional singular value decomposition (2DSVD) for 2D Maps and images. In: Proceedings of the 2005 SIAM International Conference on Data Mining. Newpot Beach, USA: SIAM, 2005. 32-43
    [18] Maj J B, Royackers L, Moonen M, Wouters J. SVD-based optimal filtering for noise reduction in dual microphone hearing aids: a real reduction time implementation and perceptual evaluation. IEEE Transactions on Biomedical Engineering, 2005, 52(9): 1563-1573
    [19] Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4(2): 490-530
    [20] Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage. Biometrica, 1994, 81: 425-455
    [21] Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4): 600-612
  • 期刊类型引用(9)

    1. 刘鑫屏,陈艺文,董子健. 基于混合算法下RBF神经网络的执行机构非线性特性在线辨识与补偿. 动力工程学报. 2024(05): 792-801 . 百度学术
    2. 刘切,李俊豪,王浩,曾建学,柴毅. 不确定性环境下维纳模型的随机变分贝叶斯学习. 自动化学报. 2024(06): 1185-1198 . 本站查看
    3. 谌卓玲,卢绍文,张亚军,潘庆玉. 工业过程指标的平滑交替辨识预报算法. 控制理论与应用. 2024(09): 1539-1547 . 百度学术
    4. 陶金梅,牛宏,张亚军,李旭生. 基于随机配置网络的非线性系统智能建模方法. 控制与决策. 2022(10): 2559-2564 . 百度学术
    5. 李荟,王福利,李鸿儒. 电熔镁炉熔炼过程异常工况识别及自愈控制方法. 自动化学报. 2020(07): 1411-1419 . 本站查看
    6. 牛宏,陶金梅,张亚军. 一种新的数据驱动的非线性自适应切换控制方法. 自动化学报. 2020(11): 2359-2366 . 本站查看
    7. 徐宝昌,张华,王金山. 基于径向基函数的非线性系统近似偏最小一乘准则辨识算法. 化工学报. 2019(02): 653-660 . 百度学术
    8. 魏萃,柴天佑,贾瑶,王良勇. 补偿信号法驱动的Pendubot自适应平衡控制. 自动化学报. 2019(06): 1146-1156 . 本站查看
    9. 董斌,刘艳梅,宋进良,韩洪刚,任川. 基于非线性时变参数的红外校验评估技术研究. 自动化仪表. 2017(10): 99-102 . 百度学术

    其他类型引用(12)

  • 加载中
计量
  • 文章访问数:  2919
  • HTML全文浏览量:  214
  • PDF下载量:  1907
  • 被引次数: 21
出版历程
  • 收稿日期:  2013-09-26
  • 修回日期:  2014-09-11
  • 刊出日期:  2015-02-20

目录

    /

    返回文章
    返回