2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度空间划分与路网建模的城市移动轨迹模式挖掘

王亮 胡琨元 库涛 吴俊伟

王亮, 胡琨元, 库涛, 吴俊伟. 基于多尺度空间划分与路网建模的城市移动轨迹模式挖掘. 自动化学报, 2015, 41(1): 47-58. doi: 10.16383/j.aas.2015.c130804
引用本文: 王亮, 胡琨元, 库涛, 吴俊伟. 基于多尺度空间划分与路网建模的城市移动轨迹模式挖掘. 自动化学报, 2015, 41(1): 47-58. doi: 10.16383/j.aas.2015.c130804
WANG Liang, HU Kun-Yuan, KU Tao, WU Jun-Wei. Mining Urban Moving Trajectory Patterns Based on Multi-scale Space Partition and Road Network Modeling. ACTA AUTOMATICA SINICA, 2015, 41(1): 47-58. doi: 10.16383/j.aas.2015.c130804
Citation: WANG Liang, HU Kun-Yuan, KU Tao, WU Jun-Wei. Mining Urban Moving Trajectory Patterns Based on Multi-scale Space Partition and Road Network Modeling. ACTA AUTOMATICA SINICA, 2015, 41(1): 47-58. doi: 10.16383/j.aas.2015.c130804

基于多尺度空间划分与路网建模的城市移动轨迹模式挖掘

doi: 10.16383/j.aas.2015.c130804
基金项目: 

国家自然科学基金(61003208, 61203161, 61174164, 61105067, 614 02360)资助

详细信息
    作者简介:

    胡琨元 中国科学院沈阳自动化研究所研究员.1994年获西安电子科技大学检测技术与仪器专业工学学士学位,2003年获东北大学系统工程专业工学博士学位.主要研究方向为智能信息处理技术,移动商务与现代物流,企业信息化. E-mail:hukunyuan@sia.cn

    通讯作者:

    王亮 西安科技大学讲师,博士.2009年获东北大学控制理论与控制工程专业工学硕士学位,2014年获中国科学院沈阳自动化研究所工学博士学位.主要研究方向为移动计算,智能信息处理,复杂系统建模与优化理论.本文通信作者. E-mail:liangwang0123@gmail.com

Mining Urban Moving Trajectory Patterns Based on Multi-scale Space Partition and Road Network Modeling

Funds: 

Supported by National Natural Science Foundation of China (61003208, 61203161, 61174164, 61105067, 61402360)

  • 摘要: 针对城市移动轨迹模式挖掘问题展开研究, 提出移动全局模式与移动过程模式相结合的挖掘方法, 即通过移动轨迹的起始位置点--终点位置点 (Origin-destination, OD点) 与移动过程序列分别进行移动全局模式与过程模式的发现. 在移动全局模式发现中, 提出了弹性多尺度空间划分方法, 避免了硬性等尺度网格划分对密集区域边缘的破坏, 同时增强了密集区域与稀疏区域的区分能力.在移动过程模式发现中, 提出了基于移动轨迹的路网拓扑关系模型构建方法, 通过路网关键位置点的探测抽取拓扑关系模型.最后基于空间划分集合与路网拓扑模型对原始 移动轨迹数据进行序列数据转换与频繁模式挖掘. 通过深圳市出租车历史 GPS 轨迹数据的实验结果表明, 该方法与现有方法相比在区域划分、数据转换等方面具有更好的性能, 同时挖掘结果语义更为丰富, 可解释性更强.
  • [1] Liu Yu, Xiao Yu, Gao Song, Kang Chao-Gui, Wang Yao-Li. A review of human mobility research based on location aware devices. Geography and Geo-Information Science, 2011, 27(4): 8-13(刘瑜, 肖昱, 高松, 康朝贵, 王瑶莉. 基于位置感知设备的人类移动研究综述. 地理与地理信息科学, 2011, 27(4): 8-13)
    [2] Wang Ming-Sheng, Huang Lin, Yan Xiao-Yong. Exploring the mobility patterns of public transport passengers. Journal of University of Electronic Science and Technology of China, 2012, 41(1): 2-7 (王明生, 黄琳, 闫小勇. 探索城市公交客流移动模式. 电子科技大学学报, 2012, 41(1): 2-7)
    [3] Zou Yong-Gui, Wan Jian-Bin, Xia Ying. LBSN user movement trajectory clustering mining method based the road network. Application Research of Computers, 2013, 30(8): 2410-2414(邹永贵, 万建斌, 夏英. 基于路网的 LBSN 用户移动轨迹聚类挖掘方法. 计算机应用研究, 2013, 30(8): 2410-2414)
    [4] Castro P S, Zhang D Q, Li S J. Urban traffic modelling and prediction using large scale taxi GPS traces. In: Proceedings of the 2012 Pervasive Computing Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2012. 57-72
    [5] Gong H M, Chen C, Bialostozky E, Lawson C T. A GPS/ GIS method for travel mode detection in New York city. Computers, Environment, and Urban Systems, 2012, 36(2): 131-139
    [6] Yue Y, Wang H D, Hu B, Li Q Q, Li Y G, Yeh A G O. Exploratory calibration of a spatial interaction model using taxi GPS trajectories. Computers, Environment, and Urban Systems, 2012, 36(2): 140-153
    [7] Zhan X Y, Hasan S, Ukkusuri S V, Kamga C. Urban link travel time estimation using large-scale taxi data with partial information. Transportation Research Part C: Emerging Technologies, 2013, 33: 37-49
    [8] Brouwers N, Woehrle M. Dwelling in the canyons: dwelling detection in urban environments using GPS, Wi-Fi, and geolocation. Pervasive and Mobile Computing, 2013, 9(5): 665 -680
    [9] Yue Y, Zhuang Y, Li Q Q, Mao Q Z. Mining time-dependent attractive areas and movement patterns from taxi trajectory data. In: Proceedings of the 17th International Conference on Geoinformatics. Fairfax, USA: IEEE, 2009. 1-6
    [10] Zhang W S, Li S J, Pan G. Mining the semantics of origin-destination flows using taxi traces. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York, USA: ACM, 2012. 943-949
    [11] Guo D S, Zhu X, Jin H, Gao P, Andris C. Discovering spatial patterns in origin-destination mobility data. Transactions in GIS, 2012, 16(3): 411-429
    [12] Pan G, Qi G D, Wu Z H, Zhang D Q, Li S J. Land-use classification using taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1): 113-123
    [13] Veloso M, Phithakkitnukoon S, Bento C. Urban mobility study using taxi traces. In: Proceedings of the 2011 International Workshop on Trajectory Data Mining and Analysis. New York: ACM, 2011. 23-30
    [14] Veloso M, Phithakkitnukoon S, Bento C. Sensing urban mobility with taxi flow. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. New York, USA: ACM, 2011. 41-44
    [15] Huang Jian-Bin, Zhang Pan-Pan, Huangfu Xue-Jun, Sun He-Li. A trajectory prediction approach for mobile objects by combining semantic features. Journal of Computer Research and Development, 2014, 51(1): 76-87(黄健斌, 张盼盼, 皇甫学军, 孙鹤立. 融合语义特征的移动对象轨迹预测方法. 计算机研究与发展, 2014, 51(1): 76-87)
    [16] Zhao Yue, Liu Yan-Heng, Yu Xue-Gang, Wei Da, Shan Chang-Wei, Zhao Yang. Method for mobile path prediction based on pattern mining and matching. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(5): 1125-1130(赵越, 刘衍珩, 余雪岗, 魏达, 单长伟, 赵洋. 基于模式挖掘与匹配的移动轨迹预测方法. 吉林大学学报 (工学版), 2008, 38(5): 1125- 1130)
    [17] Gidófalvi G, Pedersen T B. Mining long, sharable patterns in trajectories of moving objects. GeoInformatica, 2009, 13(1): 27-55
    [18] Sohn K, Kim D. Dynamic origin-destination flow estimation using cellular communication system. IEEE Transactions on Vehicular Technology, 2008, 57(5): 2703-2713
    [19] Caceres N, Wideberg J P, Benitez F G. Deriving origin destination data from a mobile phone network. IET Intelligent Transport Systems, 2007, 1(1): 15-26
    [20] Won J I, Kim S W, Baek J H, Lee J. Trajectory clustering in road network environment. In: Proceedings of the 2009 Computational Intelligence and Data Mining. Nashville, USA: IEEE, 2009. 299-305
    [21] Li X L, Han J W, Lee J G, Gonzalez H. Traffic density-based discovery of hot routes in road networks. Advances in Spatial and Temporal Databases, Berlin Heidelberg: Springer, 2007. 441-459
    [22] Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2007. 330-339
    [23] Lee J G, Han J W, Li X L, Gonzalez H. TraClass: trajectory classification using hierarchical region based and trajectory based clustering. In: Proceedings of the 2008 VLDB Endowment. Auckland, New Zealand: VLDB, 2008. 1081-1094
    [24] Wang L, Hu K Y, Ku T, Yan X H. Mining frequent trajectory pattern based on vague space partition. Knowledge-Based Systems, 2013, 50: 100-111
    [25] Li H J, Tang C J, Qiao S J, Wang Y, Yang N, Li C. Hotspot district trajectory prediction. In: Proceedings of the 2010 Web-Age Information Management. Berlin Heidelberg: Springer, 2010. 74-84
    [26] Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM-SIGMOD International Conference on Management of Data. New York, USA: ACM, 1993. 207-216
    [27] Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proceedings of the 1994 International Conference on Very Large Data Bases. Santiago, Chile: VLDB, 1994. 487-499
    [28] Srikant R, Agrawal R. Mining sequential patterns: generalizations and performance improvements. In: Proceedings of the 5th International Conference on Extending Database Technology. Avignon, France: EDBT, 1996. 3-17
    [29] Pei J, Han J W, Mortazavi-Asl B, Wang J Y, Pinto H, Chen Q M. Mining sequential patterns by pattern-growth: the prefixspan approach. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(11): 1424-1440
    [30] Han J W, Cheng H, Xin D, Yan X F. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 2007, 15(1): 55-86
    [31] Wu Feng, Zhong Yan, Wu Quan-Yuan. Mining frequent patterns over data stream under the time decaying model. Acta Automatica Sinica, 2010, 36(5): 674-684(吴枫, 仲妍, 吴泉源. 基于时间衰减模型的数据流频繁模式挖掘. 自动化学报, 2010, 36(5): 674-684)
    [32] Pan Yun-He, Wang Jin-Long, Xu Cong-Fu. State-of-the-art on frequent pattern mining in data streams. Acta Automatica Sinica, 2006, 32(4): 594-602(潘云鹤, 王金龙, 徐从富. 数据流频繁模式挖掘研究进展. 自动化学报, 2006, 32(4): 594-602)
  • 加载中
计量
  • 文章访问数:  1721
  • HTML全文浏览量:  103
  • PDF下载量:  1099
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-19
  • 修回日期:  2014-03-25
  • 刊出日期:  2015-01-20

目录

    /

    返回文章
    返回