2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二阶广义全变差正则项的模糊图像恢复算法

任福全 邱天爽

杨贵军, 蒋朝辉, 桂卫华, 阳春华, 谢永芳. 基于熵权-可拓理论的高炉软熔带位置状态模糊综合评判方法. 自动化学报, 2015, 41(1): 75-83. doi: 10.16383/j.aas.2015.c140232
引用本文: 任福全, 邱天爽. 基于二阶广义全变差正则项的模糊图像恢复算法. 自动化学报, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616
YANG Gui-Jun, JIANG Zhao-Hui, GUI Wei-Hua, YANG Chun-Hua, XIE Yong-Fang. Fuzzy Synthesis Evaluation Method for Position State of Blast Furnace Cohesive Zone Based on Entropy Weight Extension Theory. ACTA AUTOMATICA SINICA, 2015, 41(1): 75-83. doi: 10.16383/j.aas.2015.c140232
Citation: REN Fu-Quan, QIU Tian-Shuang. Blurred Image Restoration Method Based on Second-order Total Generalized Variation Regularization. ACTA AUTOMATICA SINICA, 2015, 41(6): 1166-1172. doi: 10.16383/j.aas.2015.c130616

基于二阶广义全变差正则项的模糊图像恢复算法

doi: 10.16383/j.aas.2015.c130616
基金项目: 

国家自然科学基金(61172108, 61139001, 81241059), 国家科技支撑计划基金(2012BAJ18B06) 资助

详细信息
    作者简介:

    任福全 大连理工大学电子信息与电气工程学部博士研究生. 2010 年获得大连理工大学数学系硕士学位. 主要研究方向为图像恢复与重建.E-mail: renfuquan@163.com

    通讯作者:

    邱天爽 大连理工大学电子信息与电气工程学部教授. 主要研究方向为信号处理与医学图像处理. E-mail: qiutsh@dlut.edu.cn

Blurred Image Restoration Method Based on Second-order Total Generalized Variation Regularization

Funds: 

Support by National Natural Science Foundation of China (61172108, 61139001, 81241059) and the Science and Technology Support Program of China (2012BAJ18B06)

  • 摘要: 针对图像去模糊问题, 采用二阶广义全变差作为修复图像的正则项构建恢复模型, 并针对重建模型的高阶与非光滑特性, 给出了基于分裂Bregman 迭代的快速算法. 实验结果表明, 该模型和数值算法能够较好地恢复被噪声和模糊污染的图像, 同时可以很好地保留图像的纹理和细节信息.
  • [1] Lucy B. An iterative technique for the rectification of observed distributions. Astronomical Journal, 1974, 79(6): 745-754
    [2] [2] Richardson W H. Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 1972, 62(1): 55-59
    [3] [3] Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the 2009 Advances in Neural Information Processing Systems. Vancouver, British Columbia: Curran Associates, Inc., 2009. 1033- 1041
    [4] [4] Galatsanos N P, Katsaggelos A K. Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Transactions on Image Processing, 1992, 1(3): 322-336
    [5] [5] Wang W L, Yang J F, Yin W T, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM Journal on Imaging Sciences, 2008, 1(3): 248- 272
    [6] [6] Babacan S D, Molina R, Katsaggelos A K. Variational Bayesian blind deconvolution using a total variation prior. IEEE Transactions on Image Processing, 2009, 18(1): 12- 26
    [7] He Chuan, Hu Chang-Hua, Zhang Wei, Shi Biao. Box-constrained total-variation image restoration with automatic parameter estimation. Acta Automatica Sinica, 2014, 40(8): 1804-1811(何川, 胡昌华, 张伟, 师彪. 区间约束的全变差图像复原和自动参数估计. 自动化学报, 2014, 40(8): 1804-1811)
    [8] [8] Bioucas-Dias J M. Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors. IEEE Transactions on Image Processing, 2006, 15(4): 937-951
    [9] [9] Zhang H, Zhang Y N. Sparse representation based iterative incremental image deblurring. In: Proceedings of the 16th IEEE International Conference on Image Processing (ICIP). Cairo, Egypt: IEEE, 2009. 1293-1296
    [10] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259- 268
    [11] Kristian B, Karl K, Thomas P. Total generalized variation. SIAM Journal on Imaging Sciences, 2010, 3(3): 492-526
    [12] Knoll1 F, Bredies K, Pock T, Stollberger R. Second order total generalized variation (TGV) for MRI. Magnetic Resonance in Medicine, 2011, 65(2): 480-491
    [13] Yin W T, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168
    [14] Goldstein T, Osher S. The split Bregman method for L1-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343
    [15] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202
    [16] Puig A T, Wiesel A, Fleury G, Hero A O. Multidimensional shrinkage-thresholding operator and group LASSO penalties. IEEE Signal Processing Letters, 2011, 18(6): 363-366
    [17] Oliveira J P, Bioucas-Dias J M, Figueiredo M A T. Adaptive total variation image deblurring: a majorization-minimization approach. Signal Processing, 2009, 89(9): 1683-1693
  • 期刊类型引用(21)

    1. 寇旭,王志明,韩松均,魏纪宗. 基于KPCA的发动机失火故障诊断研究. 工业控制计算机. 2023(11): 90-91+94 . 百度学术
    2. 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断. 吉林大学学报(工学版). 2022(02): 417-424 . 百度学术
    3. 张衡,张鹏涛,姜国朋. 基于频域特征和神经网络的柴油机失火故障诊断. 机电工程技术. 2022(08): 250-253 . 百度学术
    4. 马帅营,王军,肖哲,关政伟,王一戎. 增程式发动机失火、爆燃造成飞轮断裂的研究. 小型内燃机与车辆技术. 2022(04): 77-85 . 百度学术
    5. 李力. 串联混动天然气发动机失火问题分析及改进. 内燃机与配件. 2020(14): 13-16 . 百度学术
    6. 党超. 汽车发动机电控系统新技术分析. 汽车实用技术. 2019(01): 107-108 . 百度学术
    7. 喻菲菲,屈卓燊,杜灿谊. 基于虚拟仪器和Matlab的振动信号测试及在发动机故障分析中的应用. 小型内燃机与车辆技术. 2019(02): 53-56 . 百度学术
    8. 韩佳佳,贾继德,梅检民,任刚,贾翔宇. 基于优选小波包和PSO-SVM的失火故障诊断. 机械设计与研究. 2019(02): 137-141 . 百度学术
    9. 韩敏,李锦冰,许美玲,韩冰. 具有工作状态转换的EIIKF船舶柴油机故障预测. 自动化学报. 2019(05): 920-926 . 本站查看
    10. 杜威. 汽车发动机失火故障的判断. 农机使用与维修. 2019(09): 68 . 百度学术
    11. 李志勇,赵红东,沈虹,赵慧敏,王青峰. 适用于往复机械状态检测的正交振动信号法. 传感器与微系统. 2019(10): 40-43 . 百度学术
    12. 许绍炎. 基于波形和数据流的汽车发动机电控系统故障诊断实验研究. 自动化与仪器仪表. 2019(11): 41-43+47 . 百度学术
    13. 韩进勇. 汽车发动机失火故障诊断依据探究. 科技风. 2018(28): 239 . 百度学术
    14. 刘同喜. 汽车发动机维修及保养方法分析. 时代汽车. 2018(03): 111-112 . 百度学术
    15. 韩树良. 浅析汽车发动机常见故障诊断与维修. 时代汽车. 2018(09): 164-165 . 百度学术
    16. 何文锋. 发动机传动系统动力总成优化设计. 能源与环保. 2018(04): 160-164+171 . 百度学术
    17. 宣桂兰. 汽车发动机失火常见诱因及预防措施分析. 南方农机. 2018(19): 115 . 百度学术
    18. 韩佳佳,贾继德,梅检民,任刚,贾翔宇. 基于深度学习和PSO-SVM的柴油机多缸失火诊断. 军事交通学院学报. 2018(11): 26-31 . 百度学术
    19. 高丽洁,杜方鑫. 配备集成智能接线盒车身电气系统的检测与维修. 汽车电器. 2018(12): 74-76 . 百度学术
    20. 王春影. 低温环境下汽车发动机运行故障智能诊断仿真. 计算机仿真. 2018(12): 131-134 . 百度学术
    21. 李洋. 车辆失火故障问题分析. 内燃机与配件. 2017(13): 82-83 . 百度学术

    其他类型引用(12)

  • 加载中
计量
  • 文章访问数:  2620
  • HTML全文浏览量:  113
  • PDF下载量:  1610
  • 被引次数: 33
出版历程
  • 收稿日期:  2013-07-01
  • 修回日期:  2015-01-30
  • 刊出日期:  2015-06-20

目录

    /

    返回文章
    返回