-
摘要: 适合处理大类数的仿射传播聚类有两个尚未解决的问题: 一是很难确定偏向参数取何值能够使算法产生最优的聚类结果; 另一个是当震荡发生后算法不能自动消除震荡并收敛. 为了解决这两个问题, 提出了自适应仿射传播聚类方法, 具体技术包括: 自适应扫描偏向参数空间来搜索聚类个数空间以寻找最优聚类结果、自适应调整阻尼因子来消除震荡以及当调整阻尼因子方法失效时的自适应逃离震荡技术. 与原算法相比, 自适应仿射传播聚类方法性能更优, 能够自动消除震荡和寻找最优聚类结果. 对模拟和真实数据集的实验结果表明, 自适应仿射传播聚类方法十分有效, 其聚类质量优于或不低于原算法.Abstract: Affinity propagation (AP) clustering has two limitations: it is hard to know what value of parameter ``preference'' can yield optimal clustering solutions, and oscillations cannot be eliminated automatically if occur. This paper proposes an adaptive AP method to overcome these limitations, including adaptive scanning of preferences to search space for finding the optimal clustering solution, adaptive adjustment of damping factors to eliminate oscillations, and adaptive escaping from oscillations when the damping-factor adjustment technique fails. In comparison to AP, the adaptive AP has better performance on automatic oscillation elimination and finding of an optimal clustering solution. Experimental results on simulated and real data sets show that the adaptive AP is effective and its quality of clustering results is better than or equal to that of AP.
计量
- 文章访问数: 3910
- HTML全文浏览量: 65
- PDF下载量: 3373
- 被引次数: 0