-
摘要: 对传感器网络下的机动目标跟踪问题提出一种分布式传感器节点动态分簇、协同跟踪算法. 通过在线优化目标跟踪的性能函数和通讯代价, 自适应地选择节点并动态分簇, 通过多传感器节点的协同感知以及信息融合提高了跟踪精度. 由于问题的非线性和传感器节点的随机性, 本文基于粒子滤波器在线预测和估计目标状态的概率分布, 使用混合高斯粒子滤波器以及选择最短路径用于传感器节点之间的信息交换节约了通讯能量, 通过一种有效的粒子方法逼近目标状态的预测方差以实现传感器节点的最优选择. 仿真结果表明, 与 IDSQ 算法相比较, 本文提出的动态分簇算法实现了对机动目标的高精度跟踪.Abstract: A distributed dynamic clustering and collaborative tracking algorithm is proposed for maneuvering target tracking problems in sensor networks. The sensor node is selected adaptively and a sensor cluster is activated online by optimizing the performance measure of tracking and cost of communication. Accuracy of tracking is improved by dynamic collaboration and information fusion of the sensor nodes. The particle filtering is employed to predict and estimate the probability distribution of target states due to nonlinear problems and randomness of the sensor nodes. The Gaussian mixture particle filtering and the shortest routing algorithm are utilized for information exchange between the sensor nodes to save energy of communication. An efficient particle method is proposed for approximating expected posterior mean square error to optimize sensor selection. The simulation shows significant improvement of the proposed algorithm over existing IDSQ methods in tracking accuracy for maneuvering target.
-
Key words:
- Sensor network /
- sensor collaboration /
- Bayesian inference /
- particle filtering
计量
- 文章访问数: 3106
- HTML全文浏览量: 85
- PDF下载量: 2100
- 被引次数: 0