Direct Algorithm for Multivariable Generalized Predictive Controller0s Coeffcients of Diagonal CARIMA Model
-
摘要: 为了简化多变量广义预测控制MGPC 的设计与实现,提出了对角CARIMA (Controlled autoregressive integrated moving average) 模型MGPC 控制器系数的直接求解方法. 利用多变量对角CARIMA 模型直接递推得到了非常简洁的 MGPC 控制器,控制增量等于控制器系数与设定值、过程输入输出历史数据、模型预测误差历史数据的乘积,控制器系数只与模型参数和设计参数有关,控制器系数维数只由模型结构参数决定. 避免了Diophantine 方程的求解,减少了在线计算量,简化了MGPC 控制器的实现. 在一个DCS 控制的非线性液位装置上的对比实验结果表明了该方法的有效性.Abstract: A direct way for getting controller0s coe±cents of multivariable generalized predictive control (MGPC) of diagonal CARIMA model is developed in order to simplify the design and implementation of MGPC. A very concise MGPC controller is obtained by directly manipulating the model predictor of a diagonal multivariable CARIMA model recursively, and the control moves are the product of the controller0s coeffcients and set-points, historical input/output data of the plant and predictive errors of the predictor. The controller's coeffcients are determined only by the model parameters and design parameters, and the number of coeffcients only depends on the orders of the model. This method avoids solving Diophantine equations, reduces the computational overhead on line, and simplifies the implementation of MGPC. Its validity is demonstrated by comparative experiment results obtained from a nonlinear liquid system controlled by DCS.
-
Key words:
- Generalized predictive control /
- mulitvariable /
- CARIMA model /
- adaptive control /
- direct algorithm
计量
- 文章访问数: 2599
- HTML全文浏览量: 126
- PDF下载量: 1825
- 被引次数: 0