基于神经网络的滤波器
Filter Based on Neural Networks
-
摘要: 利用函数连接型网络理论,提出了一种新的基于神经网络的非线性滤波器(NNNF),证 明了NNNF的无偏性和最小方差性.将NNNF用于谷氨酸和红霉素发酵过程的状态估计, 结果表明,NNNF滤波估计值与实验结果吻合得相当好,对噪声特性无特殊要求,对初始状 态估值具有一定的鲁棒性,NNNF可利用有限的状态量测信息在线推算其它不可测量的状 态变化,为非线性生化过程的在线优化奠定了基础.Abstract: Introducing the functional-like network theory, nonlinear filter based on neural networks(NNNF) for state estimation of stochastic nonlinear systems is proposed by the using of data of on-line measurements or available off-line measurements data. The performance of biaslessness and minimal error variances of NNNF are proven. NNNF is applied to the state estimations of glutamic acid fermentation and erythromycin fermentation processes disturbed by noise, and the estimation by experimental errors. The estimated results and experimental online state estimation coincide very well. NNNF is insensitive to noise distributions and initial state estimation, NNNF can be used in on-line measurements of biomass, substrate, and product concentrations.
计量
- 文章访问数: 3074
- HTML全文浏览量: 127
- PDF下载量: 1085
- 被引次数: 0