奇异H∞控制问题的二次矩阵不等式的可解性
Solvability of Quadratic Matrix Inequalities of Singular H∞ Control Problems
-
摘要: 研究具有无穷远零点的奇异H∞控制问题的二次矩阵不等式的可解性,证明了通过 求解广义特征值问题,可以直接求得二次矩阵不等式的解,从而简化了原需通过复杂的系统 分解和变换来求解二次矩阵不等式的方法.文中建立了基于几何控制理论和基于J-无损分 解理论的两种不同的奇异H∞控制分析方法之间的联系,并揭示了具有无穷远零点的奇异 H∞控制系统的特征空间结构.Abstract: The solvability of quadratic matrix inequalities of singular H∞ control problems with infinite zeros is studied in this paper. It is proved that the quadratic matrix inequality can be solved directly via the generalized eigenvalue problems. The previous method of solving the quadratic matrix inequality involving complicated decompositions and transformations of the systems is avoided. The connection between two different approaches to singular H∞ control problems based on geometric control theory and (J,J')-lossless factorization theory respectively is established. This paper illustrates the eigenspace structure of singular H∞ control systems.
计量
- 文章访问数: 2287
- HTML全文浏览量: 108
- PDF下载量: 911
- 被引次数: 0