关于非线性Morgan问题的一个充分条件
A Sufficient Condition for Nonlinear Morgan's Problem
-
摘要: 研究一般右可逆非方非线性系统的Morgan问题.在系统结构分解的框架下,先利 用一个类Singh算法来刻画系统本性阶与无穷零点的差集,然后给出一个求取积分串的新算 法.如果上述差集与积分串的长度满足一个简单的不等式关系,则可以证明,此时Morgan问 题一定有解,并给出一组解耦反馈的构造方法.Abstract: This paper is to study the so-called Morgan's problem for general nonsquare nonlinear systems. Within the framework of structural decomposition, a quasi-Singh's algorithm is utilized to characterize the gap between the essential orders and the infinite structure, and a new algorithm is offered to calculate strings of integrators. If the gap and the lengths of the strings satisfy a simple inequality, then the corresponding nonlinear Morgan's problem has at least one solution, and a decoupling feedback can be constructed.
-
Key words:
- Nonlinear systems /
- Morgan's problem /
- structural decomposition /
- strings of integrators
计量
- 文章访问数: 2087
- HTML全文浏览量: 66
- PDF下载量: 1060
- 被引次数: 0