OBE算法对误差界低估的鲁棒性
Robustness of OBE Algorithms to Underestimation of Error Bounds
-
摘要: 研究了具有未知但有界(UBB)误差系统辨识的最优定界椭球(OBE)算法对误差界 低估的鲁棒性.证明了在一定的条件下,即使误差界低估,任何OBE算法都能保持其收敛性. 这一结论可用于具有UBB误差的实际系统参数估计中,以期获得不太保守的结果.Abstract: The main result of this paper is that the optimal bounding ellipsoid (OBE) algorithms used to identify systems with unknown but bounded (UBB) errors are robust to underestimation of error bounds, i, e. , any OBE algorithm can remain its convergence under certain conditions even if the error bounds are underestimated. This result can be used in parameter estimation of practical systems with unknown error bounds, and less conservative identification results can be expected.
-
Key words:
- OBE algorithms /
- UBB error /
- set membership identification /
- convergence /
- robustness
计量
- 文章访问数: 2892
- HTML全文浏览量: 75
- PDF下载量: 896
- 被引次数: 0