润滑油生产溶剂回收系统的混合优化策略
A Combined Optimized Strategy for Solvent Recovering System in Lubricating Oil Production
-
摘要: 溶剂回收系统的优化目标是在保证润滑油质量的前提下尽量降低能量消耗,由于外 界干扰大、参数波动大、存在较大滞后等因素,能耗优化数学模型难以满足在线优化的要求, 为此提出了一种数学建模与优化、专家系统建模与优化相结合的混合优化策略.为满足能耗 优化的需要,采用了一种基于BP神经网络的润滑油质量指标"闪点"的软测量技术和一种保 证蒸发塔温度控制的非线性预测算法.实际应用结果证明该混合优化策略是成功的.Abstract: The optimization objects of solvent recovering system are to produce high quality lubricating oil and save energy. Because of interference, fluctuation, strong coupling and large stagnancy, the system's mathematical model can't meet the requirement of on-line energy optimization, and thus a combined optimization strategy is put forward, which combines mathematical modeling&optimization with expert system modeling&optimization. A BP neural network is also adopted to realize soft measurement of the index of lubricating oil and a nonlinear predictive control algorithm is adopted to control the tower's temperature. Actual production result proves the success of the strategy.
计量
- 文章访问数: 2857
- HTML全文浏览量: 121
- PDF下载量: 940
- 被引次数: 0