有界误差模型的一种结构辨识方法
A Structure Identification Method for Bounded-Error Models
-
摘要: 针对具有未知但有界(UBB)误差的线性回归模型辨识问题,提出了一种新的鲁棒结 构选择方法.该方法以重复递推椭球外界算法所得椭球轴信息阵的行列式相对值最大作为模 型定阶准则.不同于以往对噪声独立性、常方差或鞅差特性的假设,该方法假设噪声是渐近独 立的.文中证明了该方法的强相容性.Abstract: A new robust structure selection method is proposed to deal with the identification problem of linear regression models with unknown but bounded (UBB) errors. The model-order determination criterion is based on maximizing the determinants' ratio of two ellipsoidal axis information matrixes obtained through repeating a recursive outer-bounding ellipsoid algorithm. Unlike the usual assumptions on noise, namely, independence, constant variance, or martingale difference properties, the assumption in this paper is of asymptotic independence. Strong consistency of the method is proved.
计量
- 文章访问数: 2898
- HTML全文浏览量: 72
- PDF下载量: 1208
- 被引次数: 0