闪速炉的神经网络冰镍质量模型与稳态优化控制研究
Study of Neural Network Quality Models and Steady-State Optimizing Control for Nickel Flash Smelting Furnace
-
摘要: 提出了基于神经元网络技术的软测量方法,建立复杂工业过程(闪速炉)模型.针对 生产工艺的要求,分别建立了生产工艺指标模型和产品产量模型,开辟了复杂工业过程产品 质量建模的新领域.在建模基础上,对闪速炉进行了稳态优化控制研究,结果表明该方法具有 较好的节能效果.最后给出了将来在线优化控制的建议.
-
关键词:
- 软测量技术 /
- 神经网络产品质量建模 /
- 稳态优化控制 /
- 闪速炉
Abstract: The paper proposes an approach that uses soft-sensing method to set up the neural network models of the complex industrial process--nickel flash smelting furnace. They are technological index quality models and yield model for the furnace. This opens up a new application field of neural network modeling. The paper also gives a study of steady-state optimizing control for the furnace. The results show that the modeling and optimization provide better effect in saving energy consumption. Finally ,the paper suggests how to implement on-line steady-state optimizing control to the furnace in the future.
计量
- 文章访问数: 3005
- HTML全文浏览量: 87
- PDF下载量: 979
- 被引次数: 0