-
摘要: 马尔可夫定位算法是利用机器人运动环境中的概率密度分布进行定位的方法.使用该 方法机器人可在完全不知道自己位置的情况下通过传感器数据和运动模型来估计自己的位置. 但是,在研究中发现它还存在一些问题,如概率减小到零后就无法恢复.对只有距离传感器的机 器人在对称的环境中仅仅采用该算法就无法确定位置.为了解决这些问题,文中给出了修正算 法,并建议在机器人上装上方向仪(如指南针或陀螺仪等),然后利用定义的一个角度高斯分布 函数来构造新的机器人感知模型.在此基础上详细地阐述了一种新的自定位技术.最后,采用仿 真程序验证了机器人在对称环境中运动时这一新算法的可行性.Abstract: The Markov localization algorithm is a means of estimating position of a mo bile robot using a probability density over the environment of the robot's moving. By means of sensory data and motion model, it can be used to estimate robot's position under global uncertainty. However, some problems are found in our study. For example, the probability density cannot be recovered when it decreases to zero. A robot with only distance sensors cannot find its position in a symmetrical environment by means of Markov localization algorithm alone. In order to solve these problems a modified Mark ov localization algorithm is presented, and an approach in which a robot is equipped with a compass or gyroscope, has been proposed. An angle Guassian distribution defined in this paper is used to construct a new perceptual model for the robot and the new localization technique based on these ideas is thoroughly presented. A simulation program is used to demonstrate the effectiveness of the new technique for a robot moving in a symmetrical environment.
-
Key words:
- Mobile robot /
- Markov localization /
- symmetrical environment
计量
- 文章访问数: 3505
- HTML全文浏览量: 95
- PDF下载量: 1365
- 被引次数: 0