A Two-Stage Random Search Algorithm of Fuzzy Neural Network with Variable Radius
-
摘要: 研究基于正态隶属函数的模糊神经网络的学习算法.将模糊神经网络对一组样本的 逼近误差表示为两组相互独立,可分批学习的可调参数的非负函数之和.其中一组可调参数 可通过令相应的非负函数为零直接求得,而与另一组可调参数相对应的非负函数就是用于这 组参数学习的性能指标.经对性能指标性质的分析给出了一种模糊神经网络的学习算法-- 二阶段变半径随机搜索法.实例表明,这种方法简便易行,可使模糊神经网络达到较高的逼近 精度.
-
关键词:
- 二阶段变半径随机搜索法 /
- 性能指标 /
- 正态函数 /
- 伪逆矩阵
Abstract: Taking normal functions as membership functions of fuzzy variables the approaching error of a fuzzy neural network to a group of samples is denoted as the sum of two nonnegative functions of two independent and adjustable groups of parameters that can be trained one after another. One of the two parameter groups can be obtained directly by taking its corresponding nonnegative functions to be zero and another parameter group can be obtained through learning according to its corresponding nonnegative functions--performance index. Based on the analysis of the performance index a new algorithm, two-stage random search algorithm with variable radius, is put forward. Some examples show that the algorithm is simple and convenient and can make fuzzy neural network attain high precision.
计量
- 文章访问数: 2498
- HTML全文浏览量: 69
- PDF下载量: 992
- 被引次数: 0