-
摘要: 有限时间H∞滤波的Riccati方程和滤波方程分别为非线性矩阵微分方程和线性变系 数微分方程,而且Riccati微分方程解的存在性还依赖于参数 γ-2,因此求这些方程的数值解一 般比较困难.按照结构力学与最优控制的模拟关系,Riccati方程解存在的临界参数 γ-2cr对应于 广义Rayleigh商的一阶本征值.因此可以用精细积分法结合扩展的Wittrick-Williams(W-W) 算法计算 γ-2cr .并求解Ricclati方程,滤波微分方程的解也可以由精细积分法计算.
-
关键词:
- H∞滤波 /
- Riccati方程 /
- 精细积分法 /
- 扩展Wittrick-Williams算法
Abstract: For finite horizon H∞ filtering problem, the Riccati equation is a nonlinear matrix differential equation and the filtering equation is a linear time-variant one. Furthermore, the existence of the solution to the Riccati equation depends on γ-2. So it is not very easy to solve these equations by general numerical algorithm. According to the analogy between structural mechanics and optimal control, the critical parameter γ-2cr corresponds to the fundamental eigenvalue of a generalized Rayleigh quotient. Therefore, the precise integration method can be employed to solve the Riccati differential equation and to computeγ-2cr with the extended Wittrick-Williams (W-W) algorithm. The numerical solution to the filtering equation can also be obtained by the precise integration method, although it is a time-variant differential equation.
计量
- 文章访问数: 2136
- HTML全文浏览量: 65
- PDF下载量: 1035
- 被引次数: 0