-
摘要: 研究了一类参数不确定的具有多个时滞的Lur'e型控制系统与时滞相关绝对稳定性问 题.通过将原系统变换为等价的奇异系统,利用Moon不等式放大向量积,构造出一个新的 Lyapunov-Krasovskii泛函.并由此基于线性矩阵不等式,得到了系统与时滞相关绝对稳定的充分条 件.这些充分条件无须预调任何参数矩阵,可以直接运用Matlab软件中LMI工具箱求解.数值例 子表明,与现有结果相比,本文结果较大地改进了保证不确定时滞Lur'e型控制系统绝对稳定的 时滞界.
-
关键词:
- Lur'e型控制系统 /
- 绝对稳定性 /
- 时滞系统 /
- 时滞相关判据 /
- 线性矩阵不等式
Abstract: This paper is concerned with delay-dependent absolute stability for a class of uncertain Lur'e systems with multiple nine-delays. By using a descriptor model transformation of the system and by applying a recent result on bounding of cross products of vectors, a new type of Lyapunov Krasovskii functional is constructed. Based on the new functional, delay-dependent surficient conditions for absolute stability are derived m terms of linear matrix inequalities. These conditions do not require any parameter tuning, and can be solvec numerically using the software LMI Lab. A numerical example is presented which shows that the proposed method can substantially improve the delay bound for absolute stability of Lur'e system with time-delays, compared to the existing ones.-
Key words:
- Lur'e system /
- absolue stability /
- delay-dependent criteria /
- time-delay /
- linear matrix mequality
计量
- 文章访问数: 2754
- HTML全文浏览量: 71
- PDF下载量: 1122
- 被引次数: 0