-
摘要: 纹理相似性研究是纹理合成和基于内容检索研究中的一个重要组成部分.在相似性 判断中,采用与人类视觉感知相对应的纹理特征,将比使用其他无明确含义的纹理特征,对 系统的进一步改善有着更为重要的指导意义.在Tamura,Amadasun和Haralick等人提出的 纹理特征的基础上分析了与人类视觉特征有较为明确对应关系的19个纹理特征,不同纹理 之间的相似性由这19个纹理特征构成的归一化特征向量之间的加权欧氏距离决定.对大量 纹理图像的相似性进行了度量,实验结果表明所选的纹理特征有较强的描述能力.使用了主 成分分析算法来压缩特征向量的维数,结果表明,6维特征主分量已经可以给出较好的纹理相 似性度量.Abstract: The evaluation of texture similarity is very important in texture synthesis and content-based image retrieval systems. In these systems, texture features corresponding to human perceptions are more suitable than those features without specific correspondence to human perceptions. In this paper, 19 texture features corresponding to human perceptions are used to evaluate the similarity of textures. These 19 features and the corresponding estimation method are proposed based on work by Tamura, Amadasun and Haralick et al. The similarity between different textures is defined by the Euclid distance of their feature vectors. Principle component analysis PCA is used to reduce the number of features from 19 to 6 while keeping about 85% capability . Experiments show that the similarity criteria based on these features works well on large texture image bases.
计量
- 文章访问数: 2703
- HTML全文浏览量: 148
- PDF下载量: 1288
- 被引次数: 0