2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自组织映射算法与基于专家系统的支持向量回归的结合

王玲 穆志纯 郭辉

王玲, 穆志纯, 郭辉. 自组织映射算法与基于专家系统的支持向量回归的结合. 自动化学报, 2005, 31(4): 612-619.
引用本文: 王玲, 穆志纯, 郭辉. 自组织映射算法与基于专家系统的支持向量回归的结合. 自动化学报, 2005, 31(4): 612-619.
WANG Ling, MU Zhi-Chun, GUO Hui. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System. ACTA AUTOMATICA SINICA, 2005, 31(4): 612-619.
Citation: WANG Ling, MU Zhi-Chun, GUO Hui. Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System. ACTA AUTOMATICA SINICA, 2005, 31(4): 612-619.

自组织映射算法与基于专家系统的支持向量回归的结合

详细信息
    通讯作者:

    王玲

Combining Self-organizing Feature Map with Support Vector Regression Based on Expert System

More Information
    Corresponding author: WANG Ling
  • 摘要: A new approach is proposed to model nonlinear dynamic systems by combining SOM (self-organizing feature map) with support vector regression (SVR) based on expert system. The whole system has a two-stage neural network architecture. In the first stage SOM is used as a clustering algorithm to partition the whole input space into several disjointed regions. A hierarchical architecture is adopted in the partition to avoid the problem of predetermining the number of partitioned regions. Then, in the second stage, multiple SVR, also called SVR experts, that best fit each partitioned region by the combination of different kernel function of SVR and promote the configuration and tuning of SVR. Finally, to apply this new approach to time-series prediction problems based on the Mackey-Glass differential equation and Santa Fe data, the results show that SVR experts has effective improvement in the generalization performance in comparison with the single SVR model.
  • 加载中
计量
  • 文章访问数:  2284
  • HTML全文浏览量:  69
  • PDF下载量:  1502
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-09-20
  • 修回日期:  2005-01-19
  • 刊出日期:  2005-07-20

目录

    /

    返回文章
    返回