摘要:
This paper analyzes noise sensitivity of bidirectional association memory (BAM) and shows that the anti-noise capability of BAM relates not only to the minimum absolute value of net inputs(MAV), as some researchers found, but also to the variance of weights associated with synapse connections. In fact, it is determined by the quotient of these two factors. On this base, a novel learning algorithm—small variance leaning for BAM(SVBAM) is proposed, which is to decrease the variance of the weights of synapse matrix. Simulation experiments show that the algorithm can decrease the variance of weights efficiently, therefore, noise immunity of BAM is improved. At the same time, perfect recall of all training pattern pairs still can be guaranteed by the algorithm.
Abstract:
This paper analyzes noise sensitivity of bidirectional association memory (BAM) and shows that the anti-noise capability of BAM relates not only to the minimum absolute value of net inputs(MAV), as some researchers found, but also to the variance of weights associated with synapse connections. In fact, it is determined by the quotient of these two factors. On this base, a novel learning algorithm—small variance leaning for BAM(SVBAM) is proposed, which is to decrease the variance of the weights of synapse matrix. Simulation experiments show that the algorithm can decrease the variance of weights efficiently, therefore, noise immunity of BAM is improved. At the same time, perfect recall of all training pattern pairs still can be guaranteed by the algorithm.