2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于期望值最大算法和离散小波框架的图像融合

刘刚 敬忠良 孙韶媛

刘刚, 敬忠良, 孙韶媛. 基于期望值最大算法和离散小波框架的图像融合. 自动化学报, 2005, 31(5): 699-704.
引用本文: 刘刚, 敬忠良, 孙韶媛. 基于期望值最大算法和离散小波框架的图像融合. 自动化学报, 2005, 31(5): 699-704.
LIU Gang, JING Zhong-Liang, SUN Shao-Yuan. Image Fusion Based on EM Algorithm and Discrete Wavelete Frame. ACTA AUTOMATICA SINICA, 2005, 31(5): 699-704.
Citation: LIU Gang, JING Zhong-Liang, SUN Shao-Yuan. Image Fusion Based on EM Algorithm and Discrete Wavelete Frame. ACTA AUTOMATICA SINICA, 2005, 31(5): 699-704.

基于期望值最大算法和离散小波框架的图像融合

详细信息
    通讯作者:

    刘刚

Image Fusion Based on EM Algorithm and Discrete Wavelete Frame

More Information
    Corresponding author: LIU Gang
  • 摘要: The discrete wavelet transform has become an attractive tool for fusing multisensor images. This paper investigates the discrete wavelet frame transform. A major advantage of this method over discrete wavelet transform is aliasing free and translation invariant. The discrete wavelet frame (DWF) transform is used to decompose the registered images into multiscale representation with the low frequency and the high frequency bands. The low frequency band is normalized and fused by using the expectation maximization (EM) algorithm. The informative importance measure is applied to the high frequency band. The final fused image is obtained by taking the inverse transform on the composite coefficient representations. Experiments show that the proposed method is more effective than conventional image fusion methods.
  • 加载中
计量
  • 文章访问数:  3539
  • HTML全文浏览量:  79
  • PDF下载量:  1656
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-26
  • 修回日期:  2005-01-18
  • 刊出日期:  2005-09-20

目录

    /

    返回文章
    返回