-
摘要: A novel decentralized PID controller design procedure based on backstepping principles is presented to operate multiple-input multiple-output (MIMO) dynamic processes. The first key feature of the design procedure is that a whole MIMO control system is decomposed into multiple control loops, therefore the sub-controllers can be efficiently flexibly designed in parallel prototype. The second key feature is that the decentralized controller has equivalency to those designed by backstepping approach. As a complementary support to the design procedure, the sufficient condition of the whole closed-loop system stability is analyzed via the small gain theorem and it can be proven that the process tracking performance is improved. The simulation results of the Shell benchmark control problem are provided to verify the effectiveness and practicality of the proposed decentralized PID control.Abstract: A novel decentralized PID controller design procedure based on backstepping principles is presented to operate multiple-input multiple-output (MIMO) dynamic processes. The first key feature of the design procedure is that a whole MIMO control system is decomposed into multiple control loops, therefore the sub-controllers can be efficiently flexibly designed in parallel prototype. The second key feature is that the decentralized controller has equivalency to those designed by backstepping approach. As a complementary support to the design procedure, the sufficient condition of the whole closed-loop system stability is analyzed via the small gain theorem and it can be proven that the process tracking performance is improved. The simulation results of the Shell benchmark control problem are provided to verify the effectiveness and practicality of the proposed decentralized PID control.
计量
- 文章访问数: 2772
- HTML全文浏览量: 137
- PDF下载量: 2264
- 被引次数: 0