Adaptive Neural Tracking Control for Unknown Output Feedback Nonlinear Time-delay Systems
-
摘要: An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique. Neural networks are used to approximate unknown time-delay functions. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error. Based on Lyapunov-Krasoviskii functional, the semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.Abstract: An adaptive output feedback neural network tracking controller is designed for a class of unknown output feedback nonlinear time-delay systems by using backstepping technique. Neural networks are used to approximate unknown time-delay functions. Delay-dependent filters are introduced for state estimation. The domination method is used to deal with the smooth time-delay basis functions. The adaptive bounding technique is employed to estimate the upper bound of the neural network reconstruction error. Based on Lyapunov-Krasoviskii functional, the semi-global uniform ultimate boundedness (SGUUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters and the neural node number. The feasibility is investigated by an illustrative simulation example.
-
Key words:
- Nonlinear time-delay systems /
- neural network /
- backstepping
计量
- 文章访问数: 2616
- HTML全文浏览量: 93
- PDF下载量: 1214
- 被引次数: 0