2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于目标区域特性的海面小目标检测快速算法

邹玉兰 汪国有 张磊

邹玉兰, 汪国有, 张磊. 基于目标区域特性的海面小目标检测快速算法. 自动化学报, 2005, 31(3): 427-433.
引用本文: 邹玉兰, 汪国有, 张磊. 基于目标区域特性的海面小目标检测快速算法. 自动化学报, 2005, 31(3): 427-433.
ZOU Yu-Lan, WANG Guo-You, ZHANG Lei. Fast Small Offshore Target Detection Based on Object Region Characteristic. ACTA AUTOMATICA SINICA, 2005, 31(3): 427-433.
Citation: ZOU Yu-Lan, WANG Guo-You, ZHANG Lei. Fast Small Offshore Target Detection Based on Object Region Characteristic. ACTA AUTOMATICA SINICA, 2005, 31(3): 427-433.

基于目标区域特性的海面小目标检测快速算法

详细信息
    通讯作者:

    邹玉兰

Fast Small Offshore Target Detection Based on Object Region Characteristic

More Information
    Corresponding author: ZOU Yu-Lan
  • 摘要: A fast object detection method based on object region dissimilarity and 1-D AGADM (one dimensional average gray absolute difference maximum) between object and background is proposed for real-time defection of small offshore targets. Then computational complexity, antinoise performance, the signal-to-noise ratio (SNR) gain between original images and their results as a function of SNR of original images and receiver operating characteristic (ROC) curve are analyzed and compared with those existing methods of small target detection such as two dimensional average gray absolute difference maximum (2-D AGADM), median contrast filter algorithm and multi-level filter algorithm. Experimental results and theoretical analysis have shown that the proposed method has faster speed and more adaptability to small object shape and also yields improved SNR performance.
  • 加载中
计量
  • 文章访问数:  2376
  • HTML全文浏览量:  77
  • PDF下载量:  1594
  • 被引次数: 0
出版历程
  • 收稿日期:  2003-09-26
  • 修回日期:  2004-10-30
  • 刊出日期:  2005-05-20

目录

    /

    返回文章
    返回