-
摘要: When dealing with pattern recognition problems one encounters different types of prior knowledge. It is important to incorporate such knowledge into classification method at hand. A very common type of prior knowledge is many data sets are on some kinds of manifolds. Distance based classification methods can make use of this by a modified distance measure called geodesic distance. We introduce a new kind of kernels for support vector machines which incorporate geodesic distance and therefore are applicable in cases such transformation invariance is known. Experiments results show that the performance of our method is comparable to that of other state-of-the-art method.Abstract: When dealing with pattern recognition problems one encounters different types of prior knowledge. It is important to incorporate such knowledge into classification method at hand. A very common type of prior knowledge is many data sets are on some kinds of manifolds. Distance based classification methods can make use of this by a modified distance measure called geodesic distance. We introduce a new kind of kernels for support vector machines which incorporate geodesic distance and therefore are applicable in cases such transformation invariance is known. Experiments results show that the performance of our method is comparable to that of other state-of-the-art method.
-
Key words:
- Support vector machine /
- geodesic distance /
- kernel function
计量
- 文章访问数: 3133
- HTML全文浏览量: 82
- PDF下载量: 1592
- 被引次数: 0