-
摘要: A multiscale principal component analysis method is proposed for sensor fault detection and identification. After decomposition of sensor signal by wavelet transform, the coarse-scale coef-ficients from the sensors with strong correlation are employed to establish the principal component analysis model. A moving window is designed to monitor data from each sensor using the model.For the purpose of sensor fault detection and identification, the data in the window is decomposed with wavelet transform to acquire the coarse-scale coefficients firstly, and the square prediction error is used to detect the failure. Then the sensor validity index is introduced to identify faulty sensor,which provides a quantitative identifying index rather than qualitative contrast given by the approach with contribution. Finally, the applicability and effectiveness of the proposed method is illustrated by sensors of industrial boiler.Abstract: A multiscale principal component analysis method is proposed for sensor fault detection and identification. After decomposition of sensor signal by wavelet transform, the coarse-scale coef-ficients from the sensors with strong correlation are employed to establish the principal component analysis model. A moving window is designed to monitor data from each sensor using the model.For the purpose of sensor fault detection and identification, the data in the window is decomposed with wavelet transform to acquire the coarse-scale coefficients firstly, and the square prediction error is used to detect the failure. Then the sensor validity index is introduced to identify faulty sensor,which provides a quantitative identifying index rather than qualitative contrast given by the approach with contribution. Finally, the applicability and effectiveness of the proposed method is illustrated by sensors of industrial boiler.
计量
- 文章访问数: 3928
- HTML全文浏览量: 130
- PDF下载量: 1505
- 被引次数: 0