2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多时滞Hopfield神经网络的鲁棒稳定性分析及吸引域的估计

张化光 季策 张铁岩

张化光, 季策, 张铁岩. 多时滞Hopfield神经网络的鲁棒稳定性分析及吸引域的估计. 自动化学报, 2006, 32(1): 84-90.
引用本文: 张化光, 季策, 张铁岩. 多时滞Hopfield神经网络的鲁棒稳定性分析及吸引域的估计. 自动化学报, 2006, 32(1): 84-90.
ZHANG Hua-Guang JI Ce, ZHANG Tie-Yan, . Analysis for Robust Stability of Hopfield Neural Networks with Multiple Delays. ACTA AUTOMATICA SINICA, 2006, 32(1): 84-90.
Citation: ZHANG Hua-Guang JI Ce, ZHANG Tie-Yan, . Analysis for Robust Stability of Hopfield Neural Networks with Multiple Delays. ACTA AUTOMATICA SINICA, 2006, 32(1): 84-90.

多时滞Hopfield神经网络的鲁棒稳定性分析及吸引域的估计

详细信息
    通讯作者:

    张化光

Analysis for Robust Stability of Hopfield Neural Networks with Multiple Delays

  • 摘要: The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analyzed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov functional. The conditions take the form of linear matrix inequality (LMI), so they are computable and verifiable efficiently. Furthermore, all the results are obtained without assuming the differentiability and monotonicity of activation functions. From the viewpoint of system analysis, our results provide sufficient conditions for the global robust stability in a manner that they specify the size of perturbation that Hopfield neural networks can endure when the structure of the network is given. On the other hand, from the viewpoint of system synthesis, our results can answer how to choose the parameters of neural networks to endure a given perturbation.
  • 加载中
计量
  • 文章访问数:  2403
  • HTML全文浏览量:  40
  • PDF下载量:  1280
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-26
  • 修回日期:  2005-10-14
  • 刊出日期:  2006-01-20

目录

    /

    返回文章
    返回