2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于期望最大化算法的自适应噪声交互多模型滤波

雷明 韩崇昭

雷明, 韩崇昭. 基于期望最大化算法的自适应噪声交互多模型滤波. 自动化学报, 2006, 32(1): 28-37.
引用本文: 雷明, 韩崇昭. 基于期望最大化算法的自适应噪声交互多模型滤波. 自动化学报, 2006, 32(1): 28-37.
LEI Ming, HAN Chong-Zhao. Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance. ACTA AUTOMATICA SINICA, 2006, 32(1): 28-37.
Citation: LEI Ming, HAN Chong-Zhao. Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance. ACTA AUTOMATICA SINICA, 2006, 32(1): 28-37.

基于期望最大化算法的自适应噪声交互多模型滤波

详细信息
    通讯作者:

    雷明

Expectation-maximization (EM) Algorithm Based on IMM Filtering with Adaptive Noise Covariance

More Information
    Corresponding author: LEI Ming
  • 摘要: A novel method under the interactive multiple model (IMM) filtering framework is presented in this paper, in which the expectation-maximization (EM) algorithm is used to identify the process noise covariance Q online. For the existing IMM filtering theory, the matrix Q is determined by means of design experience, but Q is actually changed with the state of the maneuvering target. Meanwhile it is severely influenced by the environment around the target, i.e., it is a variable of time. Therefore, the experiential covariance Q can not represent the influence of state noise in the maneuvering process exactly. Firstly, it is assumed that the evolved state and the initial conditions of the system can be modeled by using Gaussian distribution, although the dynamic system is of a nonlinear measurement equation, and furthermore the EM algorithm based on IMM filtering with the Q identification online is proposed. Secondly, the truncated error analysis is performed. Finally, the Monte Carlo simulation results are given to show that the proposed algorithm outperforms the existing algorithms and the tracking precision for the maneuvering targets is improved efficiently.
  • 加载中
计量
  • 文章访问数:  3397
  • HTML全文浏览量:  126
  • PDF下载量:  2268
  • 被引次数: 0
出版历程
  • 收稿日期:  2005-07-26
  • 修回日期:  2005-10-19
  • 刊出日期:  2006-01-20

目录

    /

    返回文章
    返回