Nonsingular Indirect Iterative Learning Control and its Application to Robot Movement Imitation
-
摘要: 针对相当广泛的一类非线性系统有限时间轨迹跟踪问题,提出了间接迭代学习方案. 采用最小二乘算法,根据重复跟踪历史辨识非线性系统的线性化模型.利用一个分段学习方案 可保证学习控制总在有效线性近似区域内进行.探讨了如何在学习过程中避免控制奇异问题, 提出了一种高效的参数修正方法,保证输入耦合矩阵的估计行列式不为零.本文将这一控制方 案应用于未知机器人及摄像机模型下的机器人运动模仿中,而不面临任何奇异问题.这是一个 采用摄像机替代传统程序编写的新的机器人编程方法.Abstract: An indirect iterative learning control scheme for a general nonlinear system to track a trajectory with a finite time interval is presented, which uses the least square algorithm to identify the linearized model of the nonlinear system in terms of previous experiences of repetitive tracking. A segmented learning scheme is proposed to keep the learning only in the linear approximation region. How to avoid control singularity is discussed. A high efficient modification is proposed to ensure non-zeso of the determinant of the estimated input matrix. The scheme is applied to robot movement imitation. Even without any knowledge about camera-robot relationship, the controller faces no singularity. This might be a new way for robot trajectory programming by means of a camera instead of hard coding.
-
Key words:
- Iterative learning control /
- adaptive control /
- visual servo
计量
- 文章访问数: 2945
- HTML全文浏览量: 123
- PDF下载量: 974
- 被引次数: 0