2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Batch Process Modelling and Optimal Control Based on Neural Network Models

Jie Zhang

周波, 涂植英. 系统参数估计的一种快速多步最小二乘法. 自动化学报, 1989, 15(2): 165-169.
引用本文: Jie Zhang. Batch Process Modelling and Optimal Control Based on Neural Network Models. 自动化学报, 2005, 31(1): 19-31.
Jie Zhang. Batch Process Modelling and Optimal Control Based on Neural Network Models. ACTA AUTOMATICA SINICA, 2005, 31(1): 19-31.
Citation: Jie Zhang. Batch Process Modelling and Optimal Control Based on Neural Network Models. ACTA AUTOMATICA SINICA, 2005, 31(1): 19-31.

Batch Process Modelling and Optimal Control Based on Neural Network Models

详细信息
    通讯作者:

    Jie Zhang

Batch Process Modelling and Optimal Control Based on Neural Network Models

More Information
    Corresponding author: Jie Zhang
  • 摘要: This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.
  • 加载中
计量
  • 文章访问数:  2439
  • HTML全文浏览量:  49
  • PDF下载量:  1491
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-01
  • 修回日期:  2004-07-30
  • 刊出日期:  2005-01-20

目录

    /

    返回文章
    返回