用DOG函数进行边缘检测的硬件网络模型
An Electronic Network for Edge Detection Using Dog Operator Function
-
摘要: 根据视觉计算理论,如果用一组不同大小的运算子对成象在视网膜上外界场景的二维图 象进行光强度变化的检测可以获得原始图象的零交叉表象,即原始要素图.本文在讨论这一 方法的基础上,提出了一种基于DOG函数的网络模型.模型满足了空间平移不变性,可实时 并且平行地对输入信号进行边缘检测.模型中引入了时间维来构成尺度空间的零交叉表象的 图谱,使得网络在简单有效的基础上实现.Abstract: In computational vision, edge detection is an important step in visual information processing to represent the image. Along with rationalizing DOG (difference of Gaussians) function as a suitable edge detection operator in terms of localization in spacial/frequency domains, the regularization theory and the informational completeness, we proposed an electronic network model of edge detection. By adjusting network parameters, the system could detect zero-crossings of an image filtered through the △2Gλ, the regularizational or psychophysical operators as DOG functions. The output of the network was a zero-crossing spectrum with time as the scale space dimension. The prospect of hardware network design is also discussed.
-
Key words:
- Edge detection /
- DOG function /
- network model
计量
- 文章访问数: 3104
- HTML全文浏览量: 110
- PDF下载量: 779
- 被引次数: 0