LQ最优控制系统中加权阵的确定
The Determination of Welghting Matrices in LQ Optimal Control Systems
-
摘要: 本文研究了LQ最优调节器的逆问题.在控制变量加权矩阵R给定的条件下,通过引入 一组自由变量,给出了满足闭环系统特征值要求的状态加权矩阵Q的一种参数化表示结果.基 于这种结果,研究了LQ逆问题的矩阵变换解法和一类系统的LQ逆问题的解法.此外,文中 还给出了不求解代数矩阵Riccati方程确定系统的最优状态反馈系数矩阵K的方法.Abstract: This paper is a study on the inverse problem of LQ optimal regulators. With the control weight given, the state weighting matrix satisfying the closed-loop eigenvalue requirements is parametrized in terms of a set of free variables. Based on the parametrization, an analytic procedure and a matrix transformation method are proposed to determine the state weighting matrix, as well as the free variables. As a result, by using the solved free variables, the optimal controller gain matrix can be determined without solving the algebraic Riccati matrix equation.
-
Key words:
- Optimal control /
- LQ inverse problem /
- weighting matrices
计量
- 文章访问数: 2767
- HTML全文浏览量: 62
- PDF下载量: 1074
- 被引次数: 0