二阶导数型边缘检测算子边缘定位误差的研究
A Study on Edge Location Error of Second Derivative Edge Detection Operators
-
摘要: 本文首先导入了离散的高斯-拉普拉斯(DLOG)及二项分布--拉普拉斯(LOB)两种二 阶导数型边缘检测算子.由独立的高斯噪声所污染的数字边缘作为边缘图象模型.使用二阶 导数型边缘检测算子对图象模型进行卷积后,用均方误差最小的准则对卷积后的图象进行平 面拟合,并求出零交点作为图象的边缘点.推导了二阶导数型算子的边缘定位概率Pd及假边 缘检测概率Pf,继而比较了两种二阶导数型边缘检测算子的性能.Abstract: Two edge detection operators of second de ivative model, the discrete Laplacian of Gaussian (DLOG) and Laplacian of binomial distribution (LOB) operators are introduced in this paper. A digital edge contaminated by an independent Gaussian noise is used as an edge image model. After convolving the image model with the edge detection operators of second derivative model, a plane fitting in the least squares sense is used to detect the zero crossing points as edge points. The Probabilities Pa of edge location and the Probabilities Pf of false edge detection are derived to compare the performances of various edge detection operators of second derivative model.
计量
- 文章访问数: 3013
- HTML全文浏览量: 75
- PDF下载量: 1212
- 被引次数: 0